Nuprl Lemma : subset-cubical-type-general

[X,Y:j⊢].  {X ⊢_} ⊆{Y ⊢_} supposing sub_cubical_set{j:l}(Y; X)


Proof




Definitions occuring in Statement :  cubical-type: {X ⊢ _} sub_cubical_set: Y ⊆ X cubical_set: CubicalSet uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a subtype_rel: A ⊆B member: t ∈ T cubical-type: {X ⊢ _} and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q prop:
Lemmas referenced :  subset-I_cube subset-restriction subtype_rel_dep_function I_cube_wf istype-universe fset_wf nat_wf names-hom_wf cube-set-restriction_wf subtype_rel-equal equal_wf iff_weakening_equal nh-id_wf squash_wf true_wf cube-set-restriction-id subtype_rel_self nh-comp_wf cube-set-restriction-comp cubical-type_wf sub_cubical_set_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaEquality_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis because_Cache promote_hyp setElimination rename productElimination dependent_set_memberEquality_alt dependent_pairEquality_alt functionExtensionality applyEquality instantiate sqequalRule universeEquality universeIsType dependent_functionElimination lambdaFormation_alt cumulativity functionEquality inhabitedIsType imageElimination natural_numberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_functionElimination functionIsType independent_pairFormation productIsType equalityIstype

Latex:
\mforall{}[X,Y:j\mvdash{}].    \{X  \mvdash{}j  \_\}  \msubseteq{}r  \{Y  \mvdash{}j  \_\}  supposing  sub\_cubical\_set\{j:l\}(Y;  X)



Date html generated: 2020_05_20-PM-02_33_16
Last ObjectModification: 2020_04_03-PM-08_44_09

Theory : cubical!type!theory


Home Index