Nuprl Lemma : trivial-constrained-term

[Gamma:j⊢]. ∀[B:{Gamma ⊢ _}]. ∀[xx:Top].  ({Gamma ⊢ _:B} ⊆{Gamma ⊢ _:B[0(𝔽|⟶ xx]})


Proof




Definitions occuring in Statement :  constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} face-0: 0(𝔽) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet subtype_rel: A ⊆B uall: [x:A]. B[x] top: Top
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} guard: {T} respects-equality: respects-equality(S;T) all: x:A. B[x] implies:  Q context-subset: Gamma, phi uimplies: supposing a face-0: 0(𝔽) cubical-term-at: u(a) not: ¬A false: False
Lemmas referenced :  cubical-term_wf context-subset_wf face-0_wf thin-context-subset cubical-type-cumulativity2 cubical_set_cumulativity-i-j empty-context-subset-lemma3 respects-equality-context-subset-term istype-top cubical-type_wf cubical_set_wf I_cube_pair_redex_lemma I_cube_wf fset_wf nat_wf cubical-term-equal face-lattice-0-not-1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaEquality_alt dependent_set_memberEquality_alt hypothesisEquality equalityIstype universeIsType thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesis because_Cache equalityTransitivity equalitySymmetry applyEquality sqequalRule Error :memTop,  dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType functionExtensionality setElimination rename independent_isectElimination voidElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[B:\{Gamma  \mvdash{}  \_\}].  \mforall{}[xx:Top].    (\{Gamma  \mvdash{}  \_:B\}  \msubseteq{}r  \{Gamma  \mvdash{}  \_:B[0(\mBbbF{})  |{}\mrightarrow{}  xx]\})



Date html generated: 2020_05_20-PM-04_52_35
Last ObjectModification: 2020_04_10-AM-11_29_39

Theory : cubical!type!theory


Home Index