Nuprl Lemma : isosceles-sep-implies-lsep
∀e:EuclideanPlane. ∀a,b,x:Point.  (xa ≅ xb ⇒ a ≠ b ⇒ (∀m:{m:Point| a=m=b} . m ≠ x) ⇒ x # ab)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane, 
geo-lsep: a # bc, 
geo-midpoint: a=m=b, 
geo-congruent: ab ≅ cd, 
geo-sep: a ≠ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
sq_exists: ∃x:A [B[x]], 
euclidean-plane: EuclideanPlane, 
sq_stable: SqStable(P), 
squash: ↓T, 
basic-geometry: BasicGeometry, 
guard: {T}, 
and: P ∧ Q, 
uimplies: b supposing a, 
geo-midpoint: a=m=b, 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
geo-perp-in: ab  ⊥x cd, 
right-angle: Rabc, 
iff: P ⇐⇒ Q, 
cand: A c∧ B, 
rev_implies: P ⇐ Q, 
oriented-plane: OrientedPlane
Lemmas referenced : 
Euclid-midpoint, 
geo-sep_wf, 
sq_stable__midpoint, 
midpoint-sep, 
geo-midpoint_wf, 
Euclid-erect-2perp, 
geo-colinear-is-colinear-set, 
geo-between-implies-colinear, 
length_of_cons_lemma, 
istype-void, 
length_of_nil_lemma, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
geo-colinear_wf, 
sq_stable__and, 
geo-perp-in_wf, 
geo-left_wf, 
sq_stable__geo-perp-in, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
sq_stable__geo-left, 
upper-dimension-axiom, 
geo-congruent-left-comm, 
geo-congruent_wf, 
geo-point_wf, 
geo-colinear-same, 
right-angle-symmetry, 
geo-midpoint-symmetry, 
lsep-iff-all-sep, 
lsep-all-sym2, 
between-preserves-left-2, 
geo-between-symmetry, 
between-preserves-left-4, 
geo-midpoint-implies-between, 
colinear-lsep2, 
geo-sep-sym, 
lsep-all-sym
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
hypothesis, 
universeIsType, 
isectElimination, 
applyEquality, 
because_Cache, 
sqequalRule, 
setElimination, 
rename, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
independent_isectElimination, 
isect_memberEquality_alt, 
voidElimination, 
natural_numberEquality, 
independent_pairFormation, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
productIsType, 
productEquality, 
instantiate, 
functionIsType, 
setIsType, 
inhabitedIsType
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,x:Point.    (xa  \mcong{}  xb  {}\mRightarrow{}  a  \mneq{}  b  {}\mRightarrow{}  (\mforall{}m:\{m:Point|  a=m=b\}  .  m  \mneq{}  x)  {}\mRightarrow{}  x  \#  ab)
Date html generated:
2019_10_16-PM-01_43_44
Last ObjectModification:
2019_08_07-PM-01_08_20
Theory : euclidean!plane!geometry
Home
Index