Nuprl Lemma : mk-real-vector-space_wf
∀[self:SeparationSpace]. ∀[z:Point(self)]. ∀[p:{f:Point(self) ⟶ Point(self) ⟶ Point(self)|
(∀x,y,z:Point(self). f x (f y z) ≡ f (f x y) z)
∧ (∀x,y:Point(self). f x y ≡ f y x)} ].
∀[m:{m:ℝ ⟶ Point(self) ⟶ Point(self)|
(∀a:ℝ. ∀x,y:Point(self). m a (p x y) ≡ p (m a x) (m a y))
∧ (∀x:Point(self)
(m r1 x ≡ x
∧ m r0 x ≡ z
∧ (∀a,b:ℝ. m a (m b x) ≡ m (a * b) x)
∧ (∀a,b:ℝ. m (a + b) x ≡ p (m a x) (m b x))))} ]. ∀[psep:∀x,x',y,y':Point(self).
(p x y # p x' y'
⇒ (x # x' ∨ y # y'))].
∀[msep:∀a,b:ℝ. ∀x,y:Point(self). (m a x # m b y
⇒ (a ≠ b ∨ x # y))].
(ss=self;
0=z;
+=p;
*=m;
+sep=psep;
*sep=msep ∈ RealVectorSpace)
Proof
Definitions occuring in Statement :
mk-real-vector-space: mk-real-vector-space,
real-vector-space: RealVectorSpace
,
rneq: x ≠ y
,
rmul: a * b
,
radd: a + b
,
int-to-real: r(n)
,
real: ℝ
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
or: P ∨ Q
,
and: P ∧ Q
,
member: t ∈ T
,
set: {x:A| B[x]}
,
apply: f a
,
function: x:A ⟶ B[x]
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
separation-space: Error :separation-space,
record+: record+,
record-select: r.x
,
subtype_rel: A ⊆r B
,
eq_atom: x =a y
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
prop: ℙ
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
or: P ∨ Q
,
mk-real-vector-space: mk-real-vector-space,
real-vector-space: RealVectorSpace
,
ss-sep: Error :ss-sep,
ss-point: Error :ss-point,
record-update: r[x := v]
,
record: record(x.T[x])
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
sq_type: SQType(T)
,
guard: {T}
,
top: Top
,
bfalse: ff
,
iff: P
⇐⇒ Q
,
not: ¬A
,
rev_implies: P
⇐ Q
,
false: False
,
ss-eq: Error :ss-eq
Lemmas referenced :
subtype_rel_self,
record-select_wf,
top_wf,
istype-atom,
not_wf,
all_wf,
or_wf,
eq_atom_wf,
uiff_transitivity,
equal-wf-base,
bool_wf,
atom_subtype_base,
assert_wf,
eqtt_to_assert,
assert_of_eq_atom,
subtype_base_sq,
rec_select_update_lemma,
istype-void,
iff_transitivity,
bnot_wf,
iff_weakening_uiff,
eqff_to_assert,
assert_of_bnot,
istype-assert,
real_wf,
Error :ss-sep_wf,
rneq_wf,
Error :ss-eq_wf,
int-to-real_wf,
rmul_wf,
radd_wf,
Error :ss-point_wf,
Error :separation-space_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
hypothesisEquality,
sqequalHypSubstitution,
dependentIntersectionElimination,
sqequalRule,
dependentIntersectionEqElimination,
thin,
hypothesis,
applyEquality,
tokenEquality,
instantiate,
extract_by_obid,
isectElimination,
universeEquality,
setEquality,
functionEquality,
cumulativity,
lambdaEquality_alt,
equalityTransitivity,
equalitySymmetry,
because_Cache,
applyLambdaEquality,
setElimination,
rename,
inhabitedIsType,
universeIsType,
dependentIntersection_memberEquality,
functionExtensionality_alt,
lambdaFormation_alt,
unionElimination,
equalityElimination,
baseApply,
closedConclusion,
baseClosed,
atomEquality,
independent_functionElimination,
productElimination,
independent_isectElimination,
dependent_functionElimination,
isect_memberEquality_alt,
voidElimination,
independent_pairFormation,
equalityIstype,
sqequalBase,
functionIsType,
functionExtensionality,
axiomEquality,
unionIsType,
isectIsTypeImplies,
setIsType,
productIsType,
natural_numberEquality
Latex:
\mforall{}[self:SeparationSpace]. \mforall{}[z:Point(self)]. \mforall{}[p:\{f:Point(self) {}\mrightarrow{} Point(self) {}\mrightarrow{} Point(self)|
(\mforall{}x,y,z:Point(self). f x (f y z) \mequiv{} f (f x y) z)
\mwedge{} (\mforall{}x,y:Point(self). f x y \mequiv{} f y x)\} ].
\mforall{}[m:\{m:\mBbbR{} {}\mrightarrow{} Point(self) {}\mrightarrow{} Point(self)|
(\mforall{}a:\mBbbR{}. \mforall{}x,y:Point(self). m a (p x y) \mequiv{} p (m a x) (m a y))
\mwedge{} (\mforall{}x:Point(self)
(m r1 x \mequiv{} x
\mwedge{} m r0 x \mequiv{} z
\mwedge{} (\mforall{}a,b:\mBbbR{}. m a (m b x) \mequiv{} m (a * b) x)
\mwedge{} (\mforall{}a,b:\mBbbR{}. m (a + b) x \mequiv{} p (m a x) (m b x))))\} ]. \mforall{}[psep:\mforall{}x,x',y,y':Point(self).
(p x y \# p x' y'
{}\mRightarrow{} (x \# x' \mvee{} y \# y'))].
\mforall{}[msep:\mforall{}a,b:\mBbbR{}. \mforall{}x,y:Point(self). (m a x \# m b y {}\mRightarrow{} (a \mneq{} b \mvee{} x \# y))].
(ss=self;
0=z;
+=p;
*=m;
+sep=psep;
*sep=msep \mmember{} RealVectorSpace)
Date html generated:
2020_05_20-PM-01_10_37
Last ObjectModification:
2019_12_10-AM-00_37_32
Theory : inner!product!spaces
Home
Index