Nuprl Lemma : rv-ip-minus

[rv:InnerProductSpace]. ∀[x,y:Point].  (-x ⋅ -(x ⋅ y))


Proof




Definitions occuring in Statement :  rv-ip: x ⋅ y inner-product-space: InnerProductSpace rv-minus: -x ss-point: Point req: y rminus: -(x) uall: [x:A]. B[x]
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a guard: {T} implies:  Q subtype_rel: A ⊆B rv-minus: -x member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  req_inversion rminus-as-rmul uiff_transitivity rv-ip-mul req_functionality req_weakening req_wf rmul_wf int-to-real_wf rv-mul_wf separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity real-vector-space_subtype1 ss-point_wf rminus_wf inner-product-space_subtype rv-minus_wf rv-ip_wf req_witness
Rules used in proof :  productElimination natural_numberEquality minusEquality because_Cache isect_memberEquality independent_isectElimination instantiate independent_functionElimination sqequalRule hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x,y:Point].    (-x  \mcdot{}  y  =  -(x  \mcdot{}  y))



Date html generated: 2016_11_08-AM-09_15_12
Last ObjectModification: 2016_10_31-PM-03_26_50

Theory : inner!product!spaces


Home Index