Nuprl Lemma : vs-lift-null-formal-sum

[K:CRng]. ∀[S:Type]. ∀[fs:basic-formal-sum(K;S)].
  ∀[vs:VectorSpace(K)]. ∀[f:S ⟶ Point(vs)].  (vs-lift(vs;f;fs) 0 ∈ Point(vs)) supposing null-formal-sum(K;S;fs)


Proof




Definitions occuring in Statement :  null-formal-sum: null-formal-sum(K;S;fs) vs-lift: vs-lift(vs;f;fs) basic-formal-sum: basic-formal-sum(K;S) vs-0: 0 vector-space: VectorSpace(K) vs-point: Point(vs) uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  true: True subtype_rel: A ⊆B basic-formal-sum: basic-formal-sum(K;S) prop: all: x:A. B[x] rng: Rng crng: CRng exists: x:A. B[x] null-formal-sum: null-formal-sum(K;S;fs) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] squash: T guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] formal-sum: formal-sum(K;S) vs-neg: -(x)
Lemmas referenced :  vs-0_wf vs-lift_wf2 zero-bfs_wf neg-bfs_wf rng_car_wf bag-append_wf crng_wf basic-formal-sum_wf null-formal-sum_wf vector-space_wf vs-point_wf equal_wf squash_wf true_wf vs-lift-append vs-add_wf rng_sig_wf vs-lift-neg-bfs vs-lift-zero-bfs iff_weakening_equal bfs-equiv-rel bfs-equiv_wf subtype_quotient vs-grp_inv_assoc rng_one_wf rng_minus_wf vs-mul_wf vs-add-assoc bag_wf formal-sum_wf
Rules used in proof :  natural_numberEquality functionExtensionality lambdaEquality applyEquality productEquality universeEquality equalitySymmetry equalityTransitivity dependent_functionElimination because_Cache axiomEquality isect_memberEquality sqequalRule rename setElimination isectElimination extract_by_obid hypothesisEquality cumulativity functionEquality hypothesis thin productElimination sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution imageElimination imageMemberEquality baseClosed independent_isectElimination independent_functionElimination levelHypothesis equalityUniverse lambdaFormation

Latex:
\mforall{}[K:CRng].  \mforall{}[S:Type].  \mforall{}[fs:basic-formal-sum(K;S)].
    \mforall{}[vs:VectorSpace(K)].  \mforall{}[f:S  {}\mrightarrow{}  Point(vs)].    (vs-lift(vs;f;fs)  =  0) 
    supposing  null-formal-sum(K;S;fs)



Date html generated: 2018_05_22-PM-09_47_27
Last ObjectModification: 2018_01_09-PM-00_45_29

Theory : linear!algebra


Home Index