Nuprl Lemma : vs-lift-null-formal-sum
∀[K:CRng]. ∀[S:Type]. ∀[fs:basic-formal-sum(K;S)].
  ∀[vs:VectorSpace(K)]. ∀[f:S ⟶ Point(vs)].  (vs-lift(vs;f;fs) = 0 ∈ Point(vs)) supposing null-formal-sum(K;S;fs)
Proof
Definitions occuring in Statement : 
null-formal-sum: null-formal-sum(K;S;fs)
, 
vs-lift: vs-lift(vs;f;fs)
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
vs-0: 0
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
true: True
, 
subtype_rel: A ⊆r B
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
rng: Rng
, 
crng: CRng
, 
exists: ∃x:A. B[x]
, 
null-formal-sum: null-formal-sum(K;S;fs)
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
formal-sum: formal-sum(K;S)
, 
vs-neg: -(x)
Lemmas referenced : 
vs-0_wf, 
vs-lift_wf2, 
zero-bfs_wf, 
neg-bfs_wf, 
rng_car_wf, 
bag-append_wf, 
crng_wf, 
basic-formal-sum_wf, 
null-formal-sum_wf, 
vector-space_wf, 
vs-point_wf, 
equal_wf, 
squash_wf, 
true_wf, 
vs-lift-append, 
vs-add_wf, 
rng_sig_wf, 
vs-lift-neg-bfs, 
vs-lift-zero-bfs, 
iff_weakening_equal, 
bfs-equiv-rel, 
bfs-equiv_wf, 
subtype_quotient, 
vs-grp_inv_assoc, 
rng_one_wf, 
rng_minus_wf, 
vs-mul_wf, 
vs-add-assoc, 
bag_wf, 
formal-sum_wf
Rules used in proof : 
natural_numberEquality, 
functionExtensionality, 
lambdaEquality, 
applyEquality, 
productEquality, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
dependent_functionElimination, 
because_Cache, 
axiomEquality, 
isect_memberEquality, 
sqequalRule, 
rename, 
setElimination, 
isectElimination, 
extract_by_obid, 
hypothesisEquality, 
cumulativity, 
functionEquality, 
hypothesis, 
thin, 
productElimination, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination, 
levelHypothesis, 
equalityUniverse, 
lambdaFormation
Latex:
\mforall{}[K:CRng].  \mforall{}[S:Type].  \mforall{}[fs:basic-formal-sum(K;S)].
    \mforall{}[vs:VectorSpace(K)].  \mforall{}[f:S  {}\mrightarrow{}  Point(vs)].    (vs-lift(vs;f;fs)  =  0) 
    supposing  null-formal-sum(K;S;fs)
Date html generated:
2018_05_22-PM-09_47_27
Last ObjectModification:
2018_01_09-PM-00_45_29
Theory : linear!algebra
Home
Index