Nuprl Lemma : meq-in-0-dim-cube

[k:ℕ]. ∀[c:ℚCube(k)].  ∀[p,q:ℝ^k].  (p ≡ q) supposing (in-rat-cube(k;q;c) and in-rat-cube(k;p;c)) supposing dim(c) \000C∈ ℤ


Proof




Definitions occuring in Statement :  in-rat-cube: in-rat-cube(k;p;c) rn-prod-metric: rn-prod-metric(n) real-vec: ^n meq: x ≡ y nat: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n int: equal: t ∈ T rat-cube-dimension: dim(c) rational-cube: Cube(k)
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) and: P ∧ Q iff: ⇐⇒ Q prop: pi1: fst(t) rational-interval: Interval all: x:A. B[x] rational-cube: Cube(k) real-vec: ^n so_apply: x[s] nat: so_lambda: λ2x.t[x] int_seg: {i..j-} implies:  Q metric: metric(X) subtype_rel: A ⊆B meq: x ≡ y uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  req-vec_weakening req-vec_functionality meq-rn-prod-metric in-rat-cube_wf iff_weakening_uiff real-vec_wf int_seg_wf rat2real_wf req-vec_wf istype-nat rational-cube_wf int_subtype_base lelt_wf set_subtype_base rat-cube-dimension_wf istype-int int-to-real_wf rn-prod-metric_wf req_witness in-0-dim-cube
Rules used in proof :  because_Cache dependent_functionElimination productElimination lambdaFormation_alt universeIsType sqequalBase baseClosed addEquality minusEquality intEquality equalityIstype isectIsTypeImplies independent_functionElimination natural_numberEquality equalitySymmetry equalityTransitivity inhabitedIsType rename setElimination lambdaEquality_alt applyEquality isect_memberEquality_alt sqequalRule independent_isectElimination hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].
    \mforall{}[p,q:\mBbbR{}\^{}k].    (p  \mequiv{}  q)  supposing  (in-rat-cube(k;q;c)  and  in-rat-cube(k;p;c))  supposing  dim(c)  =  0



Date html generated: 2019_10_30-AM-10_12_56
Last ObjectModification: 2019_10_29-PM-03_03_59

Theory : real!vectors


Home Index