Nuprl Lemma : not-rat-cube-third

[k:ℕ]. ∀[p:ℝ^k]. ∀[c:ℚCube(k)].
  rat-cube-third(k;p;c) ⇐⇒ in-rat-cube(k;p;c) ∧ (¬¬(∃i:ℕk. rat-interval-third(p i;c i)))))


Proof




Definitions occuring in Statement :  rat-cube-third: rat-cube-third(k;p;c) rat-interval-third: rat-interval-third(p;I) in-rat-cube: in-rat-cube(k;p;c) real-vec: ^n int_seg: {i..j-} nat: uall: [x:A]. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A and: P ∧ Q apply: a natural_number: $n rational-cube: Cube(k)
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] stable: Stable{P} rat-cube-third: rat-cube-third(k;p;c) or: P ∨ Q uimplies: supposing a le: A ≤ B rnonneg: rnonneg(x) rleq: x ≤ y all: x:A. B[x] in-rat-cube: in-rat-cube(k;p;c) rev_implies:  Q prop: rational-cube: Cube(k) real-vec: ^n nat: exists: x:A. B[x] false: False not: ¬A implies:  Q and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  double-negation-hyp-elim Error :not-not-all-int_seg-shift,  stable__not minimal-not-not-excluded-middle minimal-double-negation-hyp-elim not_wf false_wf stable__in-rat-cube istype-nat real-vec_wf rational-cube_wf le_witness_for_triv in-rat-cube_wf rat-cube-third_wf istype-void rat-interval-third_wf int_seg_wf
Rules used in proof :  dependent_pairFormation_alt productEquality unionElimination unionIsType functionEquality unionEquality isectIsTypeImplies isect_memberEquality_alt inhabitedIsType functionIsTypeImplies independent_isectElimination equalitySymmetry equalityTransitivity dependent_functionElimination lambdaEquality_alt independent_pairEquality because_Cache productElimination applyEquality hypothesisEquality rename setElimination natural_numberEquality isectElimination extract_by_obid universeIsType productIsType functionIsType sqequalRule voidElimination independent_functionElimination sqequalHypSubstitution hypothesis thin lambdaFormation_alt independent_pairFormation cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[p:\mBbbR{}\^{}k].  \mforall{}[c:\mBbbQ{}Cube(k)].
    (\mneg{}rat-cube-third(k;p;c)  \mLeftarrow{}{}\mRightarrow{}  in-rat-cube(k;p;c)  \mwedge{}  (\mneg{}\mneg{}(\mexists{}i:\mBbbN{}k.  (\mneg{}rat-interval-third(p  i;c  i)))))



Date html generated: 2019_11_04-PM-04_43_29
Last ObjectModification: 2019_11_04-PM-03_17_25

Theory : real!vectors


Home Index