Nuprl Lemma : not-rat-cube-third
∀[k:ℕ]. ∀[p:ℝ^k]. ∀[c:ℚCube(k)].
  (¬rat-cube-third(k;p;c) 
⇐⇒ in-rat-cube(k;p;c) ∧ (¬¬(∃i:ℕk. (¬rat-interval-third(p i;c i)))))
Proof
Definitions occuring in Statement : 
rat-cube-third: rat-cube-third(k;p;c)
, 
rat-interval-third: rat-interval-third(p;I)
, 
in-rat-cube: in-rat-cube(k;p;c)
, 
real-vec: ℝ^n
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
and: P ∧ Q
, 
apply: f a
, 
natural_number: $n
, 
rational-cube: ℚCube(k)
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
stable: Stable{P}
, 
rat-cube-third: rat-cube-third(k;p;c)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
all: ∀x:A. B[x]
, 
in-rat-cube: in-rat-cube(k;p;c)
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
rational-cube: ℚCube(k)
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
double-negation-hyp-elim, 
Error :not-not-all-int_seg-shift, 
stable__not, 
minimal-not-not-excluded-middle, 
minimal-double-negation-hyp-elim, 
not_wf, 
false_wf, 
stable__in-rat-cube, 
istype-nat, 
real-vec_wf, 
rational-cube_wf, 
le_witness_for_triv, 
in-rat-cube_wf, 
rat-cube-third_wf, 
istype-void, 
rat-interval-third_wf, 
int_seg_wf
Rules used in proof : 
dependent_pairFormation_alt, 
productEquality, 
unionElimination, 
unionIsType, 
functionEquality, 
unionEquality, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
inhabitedIsType, 
functionIsTypeImplies, 
independent_isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
dependent_functionElimination, 
lambdaEquality_alt, 
independent_pairEquality, 
because_Cache, 
productElimination, 
applyEquality, 
hypothesisEquality, 
rename, 
setElimination, 
natural_numberEquality, 
isectElimination, 
extract_by_obid, 
universeIsType, 
productIsType, 
functionIsType, 
sqequalRule, 
voidElimination, 
independent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
thin, 
lambdaFormation_alt, 
independent_pairFormation, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[p:\mBbbR{}\^{}k].  \mforall{}[c:\mBbbQ{}Cube(k)].
    (\mneg{}rat-cube-third(k;p;c)  \mLeftarrow{}{}\mRightarrow{}  in-rat-cube(k;p;c)  \mwedge{}  (\mneg{}\mneg{}(\mexists{}i:\mBbbN{}k.  (\mneg{}rat-interval-third(p  i;c  i)))))
Date html generated:
2019_11_04-PM-04_43_29
Last ObjectModification:
2019_11_04-PM-03_17_25
Theory : real!vectors
Home
Index