Nuprl Lemma : rat-cube-complex-polyhedron-inhabited

k:ℕ. ∀[n:ℕ]. ∀K:n-dim-complex. (0 < ||K||  |K|)


Proof




Definitions occuring in Statement :  rat-cube-complex-polyhedron: |K| length: ||as|| nat: less_than: a < b uall: [x:A]. B[x] all: x:A. B[x] implies:  Q natural_number: $n rational-cube-complex: n-dim-complex
Definitions unfolded in proof :  le: A ≤ B stable-union: Error :stable-union,  rat-cube-complex-polyhedron: |K| rev_implies:  Q bfalse: ff iff: ⇐⇒ Q btrue: tt ifthenelse: if then else fi  guard: {T} sq_type: SQType(T) rat-cube-dimension: dim(c) select: L[n] uiff: uiff(P;Q) prop: exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a decidable: Dec(P) lelt: i ≤ j < k ge: i ≥  nat: int_seg: {i..j-} l_all: (∀x∈L.P[x]) top: Top cons: [a b] and: P ∧ Q false: False less_than': less_than'(a;b) squash: T less_than: a < b or: P ∨ Q member: t ∈ T rational-cube-complex: n-dim-complex implies:  Q uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  int_seg_wf non_neg_length int_seg_properties cons_wf select_wf in-rat-cube_wf istype-false select-cons-hd int_formula_prop_eq_lemma intformeq_wf assert_of_bnot eqff_to_assert inhabited-iff-in-rat-cube eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases inhabited-rat-cube_wf false_wf int_term_value_add_lemma int_formula_prop_less_lemma itermAdd_wf intformless_wf add-is-int-iff istype-le int_term_value_var_lemma int_formula_prop_and_lemma itermVar_wf intformand_wf decidable__lt int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-int itermConstant_wf intformle_wf intformnot_wf full-omega-unsat decidable__le nat_properties istype-nat rational-cube-complex_wf length_wf istype-less_than istype-void length_of_cons_lemma product_subtype_list length_of_nil_lemma list-cases rational-cube_wf
Rules used in proof :  functionIsType because_Cache minusEquality cumulativity instantiate productIsType baseClosed closedConclusion baseApply equalitySymmetry equalityTransitivity pointwiseFunctionality int_eqEquality addEquality lambdaEquality_alt dependent_pairFormation_alt independent_functionElimination approximateComputation independent_isectElimination independent_pairFormation dependent_set_memberEquality_alt inhabitedIsType universeIsType natural_numberEquality isect_memberEquality_alt hypothesis_subsumption promote_hyp voidElimination productElimination imageElimination sqequalRule unionElimination dependent_functionElimination hypothesis hypothesisEquality isectElimination extract_by_obid introduction cut rename thin setElimination sqequalHypSubstitution isect_memberFormation_alt lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}[n:\mBbbN{}].  \mforall{}K:n-dim-complex.  (0  <  ||K||  {}\mRightarrow{}  |K|)



Date html generated: 2019_10_30-AM-10_13_13
Last ObjectModification: 2019_10_26-PM-00_49_53

Theory : real!vectors


Home Index