Nuprl Lemma : rat-cube-complex-polyhedron-inhabited
∀k:ℕ. ∀[n:ℕ]. ∀K:n-dim-complex. (0 < ||K|| 
⇒ |K|)
Proof
Definitions occuring in Statement : 
rat-cube-complex-polyhedron: |K|
, 
length: ||as||
, 
nat: ℕ
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
, 
rational-cube-complex: n-dim-complex
Definitions unfolded in proof : 
le: A ≤ B
, 
stable-union: Error :stable-union, 
rat-cube-complex-polyhedron: |K|
, 
rev_implies: P 
⇐ Q
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
guard: {T}
, 
sq_type: SQType(T)
, 
rat-cube-dimension: dim(c)
, 
select: L[n]
, 
uiff: uiff(P;Q)
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
decidable: Dec(P)
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
l_all: (∀x∈L.P[x])
, 
top: Top
, 
cons: [a / b]
, 
and: P ∧ Q
, 
false: False
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
, 
or: P ∨ Q
, 
member: t ∈ T
, 
rational-cube-complex: n-dim-complex
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
int_seg_wf, 
non_neg_length, 
int_seg_properties, 
cons_wf, 
select_wf, 
in-rat-cube_wf, 
istype-false, 
select-cons-hd, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
assert_of_bnot, 
eqff_to_assert, 
inhabited-iff-in-rat-cube, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
inhabited-rat-cube_wf, 
false_wf, 
int_term_value_add_lemma, 
int_formula_prop_less_lemma, 
itermAdd_wf, 
intformless_wf, 
add-is-int-iff, 
istype-le, 
int_term_value_var_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
intformand_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-int, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
istype-nat, 
rational-cube-complex_wf, 
length_wf, 
istype-less_than, 
istype-void, 
length_of_cons_lemma, 
product_subtype_list, 
length_of_nil_lemma, 
list-cases, 
rational-cube_wf
Rules used in proof : 
functionIsType, 
because_Cache, 
minusEquality, 
cumulativity, 
instantiate, 
productIsType, 
baseClosed, 
closedConclusion, 
baseApply, 
equalitySymmetry, 
equalityTransitivity, 
pointwiseFunctionality, 
int_eqEquality, 
addEquality, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
inhabitedIsType, 
universeIsType, 
natural_numberEquality, 
isect_memberEquality_alt, 
hypothesis_subsumption, 
promote_hyp, 
voidElimination, 
productElimination, 
imageElimination, 
sqequalRule, 
unionElimination, 
dependent_functionElimination, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}[n:\mBbbN{}].  \mforall{}K:n-dim-complex.  (0  <  ||K||  {}\mRightarrow{}  |K|)
Date html generated:
2019_10_30-AM-10_13_13
Last ObjectModification:
2019_10_26-PM-00_49_53
Theory : real!vectors
Home
Index