Nuprl Lemma : rccp-dist-positive

k:ℕ
  ∀[n:ℕ]
    ∀K:{K:n-dim-complex| 0 < ||K||} . ∀x:ℝ^k.
      (r0 < dist(x, |K|) ⇐⇒ ∃n:ℕ+. ∀p:|K|. ((r1/r(n)) ≤ mdist(rn-prod-metric(k);x;p)))


Proof




Definitions occuring in Statement :  rccp-dist: dist(x, |K|) rat-cube-complex-polyhedron: |K| rn-prod-metric: rn-prod-metric(n) real-vec: ^n mdist: mdist(d;x;y) rdiv: (x/y) rleq: x ≤ y rless: x < y int-to-real: r(n) length: ||as|| nat_plus: + nat: less_than: a < b uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q set: {x:A| B[x]}  natural_number: $n rational-cube-complex: n-dim-complex
Definitions unfolded in proof :  rccp-dist: dist(x, |K|) rat-cube-complex-polyhedron: |K| subtype_rel: A ⊆B uimplies: supposing a rational-cube-complex: n-dim-complex member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  istype-nat rational-cube_wf length_wf istype-less_than rational-cube-complex_wf real-vec_wf rccp-compact_wf rat-cube-complex-polyhedron_wf rn-prod-metric_wf compact-dist-positive
Rules used in proof :  inhabitedIsType natural_numberEquality setIsType universeIsType lambdaEquality_alt independent_isectElimination rename setElimination hypothesis hypothesisEquality dependent_functionElimination because_Cache thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut isect_memberFormation_alt lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\mBbbN{}
    \mforall{}[n:\mBbbN{}]
        \mforall{}K:\{K:n-dim-complex|  0  <  ||K||\}  .  \mforall{}x:\mBbbR{}\^{}k.
            (r0  <  dist(x,  |K|)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}\msupplus{}.  \mforall{}p:|K|.  ((r1/r(n))  \mleq{}  mdist(rn-prod-metric(k);x;p)))



Date html generated: 2019_10_31-AM-06_04_22
Last ObjectModification: 2019_10_30-PM-04_32_30

Theory : real!vectors


Home Index