Nuprl Lemma : rccp-dist-positive
∀k:ℕ
  ∀[n:ℕ]
    ∀K:{K:n-dim-complex| 0 < ||K||} . ∀x:ℝ^k.
      (r0 < dist(x, |K|) 
⇐⇒ ∃n:ℕ+. ∀p:|K|. ((r1/r(n)) ≤ mdist(rn-prod-metric(k);x;p)))
Proof
Definitions occuring in Statement : 
rccp-dist: dist(x, |K|)
, 
rat-cube-complex-polyhedron: |K|
, 
rn-prod-metric: rn-prod-metric(n)
, 
real-vec: ℝ^n
, 
mdist: mdist(d;x;y)
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rless: x < y
, 
int-to-real: r(n)
, 
length: ||as||
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
rational-cube-complex: n-dim-complex
Definitions unfolded in proof : 
rccp-dist: dist(x, |K|)
, 
rat-cube-complex-polyhedron: |K|
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
rational-cube-complex: n-dim-complex
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
istype-nat, 
rational-cube_wf, 
length_wf, 
istype-less_than, 
rational-cube-complex_wf, 
real-vec_wf, 
rccp-compact_wf, 
rat-cube-complex-polyhedron_wf, 
rn-prod-metric_wf, 
compact-dist-positive
Rules used in proof : 
inhabitedIsType, 
natural_numberEquality, 
setIsType, 
universeIsType, 
lambdaEquality_alt, 
independent_isectElimination, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
dependent_functionElimination, 
because_Cache, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k:\mBbbN{}
    \mforall{}[n:\mBbbN{}]
        \mforall{}K:\{K:n-dim-complex|  0  <  ||K||\}  .  \mforall{}x:\mBbbR{}\^{}k.
            (r0  <  dist(x,  |K|)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}\msupplus{}.  \mforall{}p:|K|.  ((r1/r(n))  \mleq{}  mdist(rn-prod-metric(k);x;p)))
Date html generated:
2019_10_31-AM-06_04_22
Last ObjectModification:
2019_10_30-PM-04_32_30
Theory : real!vectors
Home
Index