Nuprl Lemma : real-ball-0

[r:{r:ℝr0 ≤ r} ]. B(0;r) ≡ Top


Proof




Definitions occuring in Statement :  real-ball: B(n;r) rleq: x ≤ y int-to-real: r(n) real: ext-eq: A ≡ B uall: [x:A]. B[x] top: Top set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B top: Top nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A implies:  Q false: False real-ball: B(n;r) real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] prop: real-vec-norm: ||x|| dot-product: x⋅y subtract: m so_lambda: λ2x.t[x] so_apply: x[s] less_than: a < b squash: T true: True sq_stable: SqStable(P) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  istype-void real-ball_wf istype-le int_seg_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf rleq_wf real-vec-norm_wf istype-top real_wf int-to-real_wf rsum-empty rsqrt_wf rleq_weakening_equal sq_stable__rleq rleq_functionality rsqrt0 req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation lambdaEquality_alt isect_memberEquality_alt voidElimination extract_by_obid hypothesis universeIsType sqequalHypSubstitution isectElimination thin dependent_set_memberEquality_alt natural_numberEquality sqequalRule lambdaFormation_alt hypothesisEquality setElimination rename functionExtensionality productElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality dependent_functionElimination because_Cache independent_pairEquality axiomEquality applyEquality setIsType minusEquality imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[r:\{r:\mBbbR{}|  r0  \mleq{}  r\}  ].  B(0;r)  \mequiv{}  Top



Date html generated: 2019_10_30-AM-10_14_49
Last ObjectModification: 2019_06_28-PM-01_52_09

Theory : real!vectors


Home Index