Nuprl Lemma : real-ball-1
∀[r:{r:ℝ| r0 ≤ r} ]. B(1;r) ≡ {x:ℝ^1| x 0 ∈ [-(r), r]} 
Proof
Definitions occuring in Statement : 
real-ball: B(n;r), 
real-vec: ℝ^n, 
rccint: [l, u], 
i-member: r ∈ I, 
rleq: x ≤ y, 
rminus: -(x), 
int-to-real: r(n), 
real: ℝ, 
ext-eq: A ≡ B, 
uall: ∀[x:A]. B[x], 
set: {x:A| B[x]} , 
apply: f a, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
real-ball: B(n;r), 
real-vec: ℝ^n, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
prop: ℙ, 
false: False, 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
i-member_wf, 
rccint_wf, 
rminus_wf, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
real-ball_wf, 
rleq_wf, 
real-vec-norm_wf, 
real-vec_wf, 
real_wf, 
int-to-real_wf, 
rabs_wf, 
member_rccint_lemma, 
iff_transitivity, 
iff_weakening_uiff, 
rleq_functionality, 
real-vec-norm-dim1, 
req_weakening, 
rabs-rleq-iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality_alt, 
hypothesisEquality, 
universeIsType, 
extract_by_obid, 
isectElimination, 
because_Cache, 
hypothesis, 
applyEquality, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
productIsType, 
lambdaFormation_alt, 
setIsType, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
productEquality
Latex:
\mforall{}[r:\{r:\mBbbR{}|  r0  \mleq{}  r\}  ].  B(1;r)  \mequiv{}  \{x:\mBbbR{}\^{}1|  x  0  \mmember{}  [-(r),  r]\} 
Date html generated:
2019_10_30-AM-10_14_51
Last ObjectModification:
2019_06_28-PM-01_52_10
Theory : real!vectors
Home
Index