Nuprl Lemma : real-ball-1

[r:{r:ℝr0 ≤ r} ]. B(1;r) ≡ {x:ℝ^1| 0 ∈ [-(r), r]} 


Proof




Definitions occuring in Statement :  real-ball: B(n;r) real-vec: ^n rccint: [l, u] i-member: r ∈ I rleq: x ≤ y rminus: -(x) int-to-real: r(n) real: ext-eq: A ≡ B uall: [x:A]. B[x] set: {x:A| B[x]}  apply: a natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B real-ball: B(n;r) real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: false: False nat: le: A ≤ B less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  i-member_wf rccint_wf rminus_wf decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than real-ball_wf rleq_wf real-vec-norm_wf real-vec_wf real_wf int-to-real_wf rabs_wf member_rccint_lemma iff_transitivity iff_weakening_uiff rleq_functionality real-vec-norm-dim1 req_weakening rabs-rleq-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation lambdaEquality_alt sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality_alt hypothesisEquality universeIsType extract_by_obid isectElimination because_Cache hypothesis applyEquality natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt isect_memberEquality_alt voidElimination sqequalRule productIsType lambdaFormation_alt setIsType productElimination independent_pairEquality axiomEquality productEquality

Latex:
\mforall{}[r:\{r:\mBbbR{}|  r0  \mleq{}  r\}  ].  B(1;r)  \mequiv{}  \{x:\mBbbR{}\^{}1|  x  0  \mmember{}  [-(r),  r]\} 



Date html generated: 2019_10_30-AM-10_14_51
Last ObjectModification: 2019_06_28-PM-01_52_10

Theory : real!vectors


Home Index