Step
*
1
1
1
1
1
1
1
of Lemma
Cauchy-Schwarz1-strict-iff
1. n : ℕ
2. x : ℕn + 1 ⟶ ℝ
3. y : ℕn + 1 ⟶ ℝ
4. r0 < Σ{Σ{(x[i1] * y[i]) - x[i] * y[i1]^2 | 0≤i1≤n} | 0≤i≤n}
5. i : ℕn + 1
6. r0 < Σ{(x[i1] * y[i]) - x[i] * y[i1]^2 | 0≤i1≤n}
7. i1 : ℕn + 1
8. r0 < (x[i1] * y[i]) - x[i] * y[i1]^2
⊢ x[i1] * y[i] ≠ x[i] * y[i1]
BY
{ (RenameVar `j' (-2)
THEN MoveToConcl (-1)
THEN (RWO "rneq-iff-rabs" 0 THENA Auto)
THEN (GenConcl ⌜((x[j] * y[i]) - x[i] * y[j]) = a ∈ ℝ⌝⋅ THENA Auto)
THEN All Thin) }
1
1. a : ℝ
⊢ (r0 < a^2)
⇒ (r0 < |a|)
Latex:
Latex:
1. n : \mBbbN{}
2. x : \mBbbN{}n + 1 {}\mrightarrow{} \mBbbR{}
3. y : \mBbbN{}n + 1 {}\mrightarrow{} \mBbbR{}
4. r0 < \mSigma{}\{\mSigma{}\{(x[i1] * y[i]) - x[i] * y[i1]\^{}2 | 0\mleq{}i1\mleq{}n\} | 0\mleq{}i\mleq{}n\}
5. i : \mBbbN{}n + 1
6. r0 < \mSigma{}\{(x[i1] * y[i]) - x[i] * y[i1]\^{}2 | 0\mleq{}i1\mleq{}n\}
7. i1 : \mBbbN{}n + 1
8. r0 < (x[i1] * y[i]) - x[i] * y[i1]\^{}2
\mvdash{} x[i1] * y[i] \mneq{} x[i] * y[i1]
By
Latex:
(RenameVar `j' (-2)
THEN MoveToConcl (-1)
THEN (RWO "rneq-iff-rabs" 0 THENA Auto)
THEN (GenConcl \mkleeneopen{}((x[j] * y[i]) - x[i] * y[j]) = a\mkleeneclose{}\mcdot{} THENA Auto)
THEN All Thin)
Home
Index