Nuprl Lemma : blended-real-agrees
∀[k:ℕ+]. ∀[x,y:ℝ].  ∀n:ℕ+k ÷ 6. ((blended-real(k;x;y) n) = (accelerate(3;x) n) ∈ ℤ)
Proof
Definitions occuring in Statement : 
blended-real: blended-real(k;x;y)
, 
accelerate: accelerate(k;f)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
divide: n ÷ m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
accelerate: accelerate(k;f)
, 
blended-real: blended-real(k;x;y)
, 
blend-seq: blend-seq(k;x;y)
, 
nat_plus: ℕ+
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
false: False
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
real: ℝ
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
has-value: (a)↓
, 
int_nzero: ℤ-o
, 
subtype_rel: A ⊆r B
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
Lemmas referenced : 
int_seg_wf, 
subtype_base_sq, 
int_subtype_base, 
equal-wf-base, 
true_wf, 
real_wf, 
nat_plus_wf, 
value-type-has-value, 
int-value-type, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
int_seg_properties, 
nat_plus_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformand_wf, 
intformless_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_le_lemma, 
less_than_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
div_rem_sum, 
nequal_wf, 
rem_bounds_1, 
nat_plus_subtype_nat, 
itermAdd_wf, 
int_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalRule, 
callbyvalueReduce, 
sqleReflexivity, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
divideEquality, 
setElimination, 
rename, 
because_Cache, 
addLevel, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
baseClosed, 
lambdaEquality, 
hypothesisEquality, 
axiomEquality, 
isect_memberEquality, 
multiplyEquality, 
unionElimination, 
equalityElimination, 
productElimination, 
applyEquality, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
voidEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
promote_hyp, 
imageMemberEquality, 
imageElimination
Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[x,y:\mBbbR{}].    \mforall{}n:\mBbbN{}\msupplus{}k  \mdiv{}  6.  ((blended-real(k;x;y)  n)  =  (accelerate(3;x)  n))
Date html generated:
2017_10_03-AM-10_09_12
Last ObjectModification:
2017_07_05-PM-04_40_31
Theory : reals
Home
Index