Nuprl Lemma : blended-real-agrees

[k:ℕ+]. ∀[x,y:ℝ].  ∀n:ℕ+k ÷ 6. ((blended-real(k;x;y) n) (accelerate(3;x) n) ∈ ℤ)


Proof




Definitions occuring in Statement :  blended-real: blended-real(k;x;y) accelerate: accelerate(k;f) real: int_seg: {i..j-} nat_plus: + uall: [x:A]. B[x] all: x:A. B[x] apply: a divide: n ÷ m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] accelerate: accelerate(k;f) blended-real: blended-real(k;x;y) blend-seq: blend-seq(k;x;y) nat_plus: + true: True nequal: a ≠ b ∈  not: ¬A implies:  Q uimplies: supposing a sq_type: SQType(T) guard: {T} false: False prop: int_seg: {i..j-} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  real: lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top bfalse: ff bnot: ¬bb assert: b has-value: (a)↓ int_nzero: -o subtype_rel: A ⊆B less_than: a < b squash: T less_than': less_than'(a;b)
Lemmas referenced :  int_seg_wf subtype_base_sq int_subtype_base equal-wf-base true_wf real_wf nat_plus_wf value-type-has-value int-value-type lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int int_seg_properties nat_plus_properties decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermMultiply_wf itermConstant_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformand_wf intformless_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_formula_prop_le_lemma less_than_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot div_rem_sum nequal_wf rem_bounds_1 nat_plus_subtype_nat itermAdd_wf int_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalRule callbyvalueReduce sqleReflexivity hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality divideEquality setElimination rename because_Cache addLevel instantiate cumulativity intEquality independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination baseClosed lambdaEquality hypothesisEquality axiomEquality isect_memberEquality multiplyEquality unionElimination equalityElimination productElimination applyEquality approximateComputation dependent_pairFormation int_eqEquality voidEquality dependent_set_memberEquality independent_pairFormation promote_hyp imageMemberEquality imageElimination

Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[x,y:\mBbbR{}].    \mforall{}n:\mBbbN{}\msupplus{}k  \mdiv{}  6.  ((blended-real(k;x;y)  n)  =  (accelerate(3;x)  n))



Date html generated: 2017_10_03-AM-10_09_12
Last ObjectModification: 2017_07_05-PM-04_40_31

Theory : reals


Home Index