Nuprl Lemma : case-real3_wf

[f:ℕ+ ⟶ 𝔹]. ∀[b:ℝ]. ∀[a:ℝ supposing ∃n:ℕ+(↑(f n))].
  case-real3(a;b;f) ∈ ℝ supposing ∀n,m:ℕ+.  ((↑(f n))  (¬↑(f m))  (|(a m) m| ≤ 4))


Proof




Definitions occuring in Statement :  case-real3: case-real3(a;b;f) real: absval: |i| nat_plus: + assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q member: t ∈ T apply: a function: x:A ⟶ B[x] subtract: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a case-real3: case-real3(a;b;f) nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: false: False subtype_rel: A ⊆B real: nat:
Lemmas referenced :  accelerate_wf decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than case-real3-seq_wf nat_plus_wf istype-assert istype-le absval_wf subtract_wf uimplies_subtype real_wf assert_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality_alt natural_numberEquality dependent_functionElimination hypothesis unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt isect_memberEquality_alt voidElimination universeIsType hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry functionIsType because_Cache applyEquality functionEquality intEquality productEquality setElimination rename inhabitedIsType isectIsTypeImplies isectIsType productIsType

Latex:
\mforall{}[f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[b:\mBbbR{}].  \mforall{}[a:\mBbbR{}  supposing  \mexists{}n:\mBbbN{}\msupplus{}.  (\muparrow{}(f  n))].
    case-real3(a;b;f)  \mmember{}  \mBbbR{}  supposing  \mforall{}n,m:\mBbbN{}\msupplus{}.    ((\muparrow{}(f  n))  {}\mRightarrow{}  (\mneg{}\muparrow{}(f  m))  {}\mRightarrow{}  (|(a  m)  -  b  m|  \mleq{}  4))



Date html generated: 2019_10_29-AM-09_37_43
Last ObjectModification: 2019_06_14-PM-03_11_14

Theory : reals


Home Index