Nuprl Lemma : case-real3_wf
∀[f:ℕ+ ⟶ 𝔹]. ∀[b:ℝ]. ∀[a:ℝ supposing ∃n:ℕ+. (↑(f n))].
  case-real3(a;b;f) ∈ ℝ supposing ∀n,m:ℕ+.  ((↑(f n)) 
⇒ (¬↑(f m)) 
⇒ (|(a m) - b m| ≤ 4))
Proof
Definitions occuring in Statement : 
case-real3: case-real3(a;b;f)
, 
real: ℝ
, 
absval: |i|
, 
nat_plus: ℕ+
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
case-real3: case-real3(a;b;f)
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
false: False
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
nat: ℕ
Lemmas referenced : 
accelerate_wf, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
case-real3-seq_wf, 
nat_plus_wf, 
istype-assert, 
istype-le, 
absval_wf, 
subtract_wf, 
uimplies_subtype, 
real_wf, 
assert_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
dependent_functionElimination, 
hypothesis, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
universeIsType, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
because_Cache, 
applyEquality, 
functionEquality, 
intEquality, 
productEquality, 
setElimination, 
rename, 
inhabitedIsType, 
isectIsTypeImplies, 
isectIsType, 
productIsType
Latex:
\mforall{}[f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[b:\mBbbR{}].  \mforall{}[a:\mBbbR{}  supposing  \mexists{}n:\mBbbN{}\msupplus{}.  (\muparrow{}(f  n))].
    case-real3(a;b;f)  \mmember{}  \mBbbR{}  supposing  \mforall{}n,m:\mBbbN{}\msupplus{}.    ((\muparrow{}(f  n))  {}\mRightarrow{}  (\mneg{}\muparrow{}(f  m))  {}\mRightarrow{}  (|(a  m)  -  b  m|  \mleq{}  4))
Date html generated:
2019_10_29-AM-09_37_43
Last ObjectModification:
2019_06_14-PM-03_11_14
Theory : reals
Home
Index