Nuprl Lemma : clear-denominator1

[a,b,c,d:ℝ].  uiff(((a/b) c) d;(c a) (d b)) supposing b ≠ r0


Proof




Definitions occuring in Statement :  rdiv: (x/y) rneq: x ≠ y req: y rmul: b int-to-real: r(n) real: uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q implies:  Q prop: all: x:A. B[x] itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top rdiv: (x/y) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rmul_wf req_wf rdiv_wf rneq_wf int-to-real_wf real_wf rmul_preserves_req rinv_wf2 req-implies-req real_term_polynomial itermSubtract_wf itermMultiply_wf itermVar_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rsub_wf req_functionality req_transitivity rmul_functionality rmul-rinv3 req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination independent_isectElimination sqequalRule productElimination independent_pairEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry natural_numberEquality dependent_functionElimination computeAll lambdaEquality int_eqEquality intEquality voidElimination voidEquality

Latex:
\mforall{}[a,b,c,d:\mBbbR{}].    uiff(((a/b)  *  c)  =  d;(c  *  a)  =  (d  *  b))  supposing  b  \mneq{}  r0



Date html generated: 2017_10_03-AM-08_38_24
Last ObjectModification: 2017_07_28-AM-07_30_36

Theory : reals


Home Index