Nuprl Lemma : clear-denominator2
∀[a,b,c,d,e:ℝ].  uiff((((a/b) * c) * e) = d;(c * e * a) = (d * b)) supposing b ≠ r0
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rneq: x ≠ y
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rmul_wf, 
req_wf, 
rdiv_wf, 
uiff_wf, 
rneq_wf, 
int-to-real_wf, 
real_wf, 
iff_weakening_uiff, 
clear-denominator1, 
req_functionality, 
rmul_assoc, 
req_weakening, 
uiff_transitivity, 
req_inversion, 
rmul-assoc, 
rmul_functionality, 
rmul_comm, 
rmul-ac
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
independent_isectElimination, 
cumulativity, 
natural_numberEquality, 
addLevel, 
productElimination, 
sqequalRule, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[a,b,c,d,e:\mBbbR{}].    uiff((((a/b)  *  c)  *  e)  =  d;(c  *  e  *  a)  =  (d  *  b))  supposing  b  \mneq{}  r0
Date html generated:
2017_10_03-AM-08_38_34
Last ObjectModification:
2017_03_14-AM-11_43_19
Theory : reals
Home
Index