Nuprl Lemma : clear-denominator2

[a,b,c,d,e:ℝ].  uiff((((a/b) c) e) d;(c a) (d b)) supposing b ≠ r0


Proof




Definitions occuring in Statement :  rdiv: (x/y) rneq: x ≠ y req: y rmul: b int-to-real: r(n) real: uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] implies:  Q prop: iff: ⇐⇒ Q rev_implies:  Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rmul_wf req_wf rdiv_wf uiff_wf rneq_wf int-to-real_wf real_wf iff_weakening_uiff clear-denominator1 req_functionality rmul_assoc req_weakening uiff_transitivity req_inversion rmul-assoc rmul_functionality rmul_comm rmul-ac
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination because_Cache independent_isectElimination cumulativity natural_numberEquality addLevel productElimination sqequalRule independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[a,b,c,d,e:\mBbbR{}].    uiff((((a/b)  *  c)  *  e)  =  d;(c  *  e  *  a)  =  (d  *  b))  supposing  b  \mneq{}  r0



Date html generated: 2017_10_03-AM-08_38_34
Last ObjectModification: 2017_03_14-AM-11_43_19

Theory : reals


Home Index