Nuprl Lemma : continuous-compact-range-totally-bounded

I:Interval. ∀f:I ⟶ℝ.  (icompact(I)  f[x] continuous for x ∈  totally-bounded(f[x](x∈I)))


Proof




Definitions occuring in Statement :  continuous: f[x] continuous for x ∈ I rrange: f[x](x∈I) icompact: icompact(I) rfun: I ⟶ℝ interval: Interval totally-bounded: totally-bounded(A) so_apply: x[s] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q uall: [x:A]. B[x] prop: so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] label: ...$L... t rfun: I ⟶ℝ icompact: icompact(I)
Lemmas referenced :  continuous-range-totally-bounded less_than_wf i-nonvoid_wf squash_wf true_wf i-approx-of-compact iff_weakening_equal continuous_wf i-member_wf real_wf icompact_wf rfun_wf interval_wf set_wf subtype_rel-equal i-approx_wf equal_wf totally-bounded_wf rset_wf rrange_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation imageMemberEquality baseClosed isectElimination applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry because_Cache universeEquality independent_isectElimination productElimination setElimination rename setEquality functionEquality instantiate

Latex:
\mforall{}I:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.    (icompact(I)  {}\mRightarrow{}  f[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  totally-bounded(f[x](x\mmember{}I)))



Date html generated: 2017_10_03-AM-10_23_42
Last ObjectModification: 2017_07_28-AM-08_07_54

Theory : reals


Home Index