Nuprl Lemma : cosine-is-limit
∀x:ℝ. Σi.-1^i * (x^2 * i)/(2 * i)! = cosine(x)
Proof
Definitions occuring in Statement : 
cosine: cosine(x)
, 
series-sum: Σn.x[n] = a
, 
rnexp: x^k1
, 
int-rdiv: (a)/k1
, 
int-rmul: k1 * a
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
multiply: n * m
, 
minus: -n
, 
natural_number: $n
, 
fastexp: i^n
, 
fact: (n)!
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
cosine: cosine(x)
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
int_nzero: ℤ-o
, 
so_apply: x[s]
, 
nequal: a ≠ b ∈ T 
, 
guard: {T}
, 
pi1: fst(t)
Lemmas referenced : 
cosine-exists-ext, 
all_wf, 
exists_wf, 
series-sum_wf, 
int-rmul_wf, 
int-rdiv_wf, 
fact_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
subtype_rel_sets, 
less_than_wf, 
nequal_wf, 
nat_plus_properties, 
intformeq_wf, 
intformless_wf, 
int_formula_prop_eq_lemma, 
int_formula_prop_less_lemma, 
equal-wf-base, 
int_subtype_base, 
rnexp_wf, 
nat_wf, 
equal_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
applyEquality, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
lambdaEquality, 
sqequalHypSubstitution, 
sqequalRule, 
hypothesisEquality, 
introduction, 
isectElimination, 
because_Cache, 
dependent_set_memberEquality, 
multiplyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
setEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :applyLambdaEquality, 
baseClosed, 
independent_functionElimination, 
productElimination
Latex:
\mforall{}x:\mBbbR{}.  \mSigma{}i.-1\^{}i  *  (x\^{}2  *  i)/(2  *  i)!  =  cosine(x)
Date html generated:
2016_10_26-AM-09_25_45
Last ObjectModification:
2016_08_25-PM-07_17_13
Theory : reals
Home
Index