Nuprl Lemma : exp-2-3-fact

n:ℕ((2 ≤ n)  2^n < 3^n)


Proof




Definitions occuring in Statement :  exp: i^n nat: less_than: a < b le: A ≤ B all: x:A. B[x] implies:  Q multiply: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: le: A ≤ B less_than': less_than'(a;b) true: True less_than: a < b squash: T exp: i^n primrec: primrec(n;b;c) decidable: Dec(P) or: P ∨ Q nat_plus: + sq_type: SQType(T) guard: {T} subtract: m
Lemmas referenced :  int_term_value_mul_lemma itermMultiply_wf nat_plus_properties exp_wf_nat_plus decidable__lt int_formula_prop_eq_lemma intformeq_wf int_subtype_base subtype_base_sq decidable__equal_int exp_step nat_wf int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le le_wf exp_wf2 member-less_than less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename introduction intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination multiplyEquality productElimination because_Cache imageElimination unionElimination dependent_set_memberEquality instantiate cumulativity imageMemberEquality baseClosed equalityTransitivity equalitySymmetry applyEquality setEquality

Latex:
\mforall{}n:\mBbbN{}.  ((2  \mleq{}  n)  {}\mRightarrow{}  2  *  2\^{}n  <  3\^{}n)



Date html generated: 2016_05_18-AM-09_35_50
Last ObjectModification: 2016_01_17-AM-02_47_09

Theory : reals


Home Index