Nuprl Lemma : fractions-rless

a,b,c,d:ℝ.  ((r0 < c)  (r0 < d)  ((a/c) < (b/d) ⇐⇒ (a d) < (b c)))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rless: x < y rmul: b int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q natural_number: $n
Definitions unfolded in proof :  rev_implies:  Q or: P ∨ Q guard: {T} rneq: x ≠ y uimplies: supposing a uall: [x:A]. B[x] prop: member: t ∈ T and: P ∧ Q iff: ⇐⇒ Q implies:  Q all: x:A. B[x] top: Top not: ¬A false: False req_int_terms: t1 ≡ t2 rdiv: (x/y) uiff: uiff(P;Q)
Lemmas referenced :  real_wf rmul_wf int-to-real_wf rdiv_wf rless_wf real_term_value_const_lemma real_term_value_var_lemma real_term_value_mul_lemma real_term_value_sub_lemma real_polynomial_null rmul-rinv req_weakening rmul_functionality req_transitivity rless_functionality itermConstant_wf rmul-one req-iff-rsub-is-0 itermVar_wf itermMultiply_wf itermSubtract_wf rinv_wf2 rmul_preserves_rless
Rules used in proof :  natural_numberEquality inrFormation hypothesis sqequalRule independent_isectElimination hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality approximateComputation because_Cache productElimination independent_functionElimination dependent_functionElimination

Latex:
\mforall{}a,b,c,d:\mBbbR{}.    ((r0  <  c)  {}\mRightarrow{}  (r0  <  d)  {}\mRightarrow{}  ((a/c)  <  (b/d)  \mLeftarrow{}{}\mRightarrow{}  (a  *  d)  <  (b  *  c)))



Date html generated: 2017_10_03-AM-08_38_55
Last ObjectModification: 2017_07_29-PM-08_39_25

Theory : reals


Home Index