Nuprl Lemma : fun-cauchy_wf
∀[I:Interval]. ∀[f:ℕ ⟶ I ⟶ℝ].  (λn.f[n;x] is cauchy for x ∈ I ∈ ℙ)
Proof
Definitions occuring in Statement : 
fun-cauchy: λn.f[n; x] is cauchy for x ∈ I
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
fun-cauchy: λn.f[n; x] is cauchy for x ∈ I
, 
so_lambda: λ2x.t[x]
, 
nat_plus: ℕ+
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
rfun: I ⟶ℝ
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
int_upper: {i...}
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
so_apply: x[s]
Lemmas referenced : 
interval_wf, 
nat_wf, 
rless_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_plus_properties, 
int_upper_properties, 
rless-int, 
int-to-real_wf, 
rdiv_wf, 
rfun_wf, 
nat_plus_subtype_nat, 
int_upper_subtype_nat, 
rsub_wf, 
rabs_wf, 
rleq_wf, 
int_upper_wf, 
real_wf, 
exists_wf, 
i-approx_wf, 
icompact_wf, 
nat_plus_wf, 
all_wf, 
i-member_wf, 
i-member-approx
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
dependent_set_memberEquality, 
because_Cache, 
isectElimination, 
isect_memberFormation, 
introduction, 
sqequalRule, 
setEquality, 
lambdaEquality, 
lambdaFormation, 
setElimination, 
rename, 
applyEquality, 
natural_numberEquality, 
independent_isectElimination, 
inrFormation, 
productElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality
Latex:
\mforall{}[I:Interval].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}].    (\mlambda{}n.f[n;x]  is  cauchy  for  x  \mmember{}  I  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-09_53_09
Last ObjectModification:
2016_01_17-AM-02_53_05
Theory : reals
Home
Index