Nuprl Lemma : i-finite-subinterval

I,J:Interval.  (I ⊆ J   i-finite(J)  i-finite(I))


Proof




Definitions occuring in Statement :  subinterval: I ⊆  i-finite: i-finite(I) interval: Interval all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a rbetween: x≤y≤z and: P ∧ Q rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B not: ¬A false: False subtype_rel: A ⊆B real: prop: so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q guard: {T} subinterval: I ⊆ 
Lemmas referenced :  less_than'_wf rsub_wf real_wf nat_plus_wf i-member_wf uall_wf isect_wf rbetween_wf exists_wf subinterval_wf interval_wf i-finite-iff-bounded i-finite_wf all_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin dependent_pairFormation hypothesisEquality because_Cache isect_memberFormation introduction sqequalRule independent_pairEquality lambdaEquality dependent_functionElimination extract_by_obid isectElimination applyEquality hypothesis setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination addLevel allFunctionality impliesFunctionality independent_functionElimination functionEquality independent_isectElimination

Latex:
\mforall{}I,J:Interval.    (I  \msubseteq{}  J    {}\mRightarrow{}  i-finite(J)  {}\mRightarrow{}  i-finite(I))



Date html generated: 2016_10_26-AM-09_31_06
Last ObjectModification: 2016_08_22-PM-10_01_38

Theory : reals


Home Index