Nuprl Lemma : i-finite-subinterval
∀I,J:Interval.  (I ⊆ J  
⇒ i-finite(J) 
⇒ i-finite(I))
Proof
Definitions occuring in Statement : 
subinterval: I ⊆ J 
, 
i-finite: i-finite(I)
, 
interval: Interval
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
rbetween: x≤y≤z
, 
and: P ∧ Q
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
not: ¬A
, 
false: False
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
subinterval: I ⊆ J 
Lemmas referenced : 
less_than'_wf, 
rsub_wf, 
real_wf, 
nat_plus_wf, 
i-member_wf, 
uall_wf, 
isect_wf, 
rbetween_wf, 
exists_wf, 
subinterval_wf, 
interval_wf, 
i-finite-iff-bounded, 
i-finite_wf, 
all_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
hypothesisEquality, 
because_Cache, 
isect_memberFormation, 
introduction, 
sqequalRule, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
extract_by_obid, 
isectElimination, 
applyEquality, 
hypothesis, 
setElimination, 
rename, 
minusEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
addLevel, 
allFunctionality, 
impliesFunctionality, 
independent_functionElimination, 
functionEquality, 
independent_isectElimination
Latex:
\mforall{}I,J:Interval.    (I  \msubseteq{}  J    {}\mRightarrow{}  i-finite(J)  {}\mRightarrow{}  i-finite(I))
Date html generated:
2016_10_26-AM-09_31_06
Last ObjectModification:
2016_08_22-PM-10_01_38
Theory : reals
Home
Index