Nuprl Lemma : mdist-difference
∀[X:Type]. ∀[d:metric(X)]. ∀[x,a,b:X].  (|mdist(d;x;a) - mdist(d;x;b)| ≤ mdist(d;a;b))
Proof
Definitions occuring in Statement : 
mdist: mdist(d;x;y), 
metric: metric(X), 
rleq: x ≤ y, 
rabs: |x|, 
rsub: x - y, 
uall: ∀[x:A]. B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
cand: A c∧ B, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
top: Top
Lemmas referenced : 
rabs-difference-bound-rleq, 
mdist_wf, 
mdist-triangle-inequality1, 
le_witness_for_triv, 
metric_wf, 
istype-universe, 
mdist-triangle-inequality, 
rleq-implies-rleq, 
rsub_wf, 
radd_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
int-to-real_wf, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
sqequalRule, 
lambdaEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType, 
instantiate, 
universeEquality, 
natural_numberEquality, 
because_Cache, 
approximateComputation, 
int_eqEquality, 
voidElimination
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[x,a,b:X].    (|mdist(d;x;a)  -  mdist(d;x;b)|  \mleq{}  mdist(d;a;b))
Date html generated:
2019_10_29-AM-11_14_36
Last ObjectModification:
2019_10_02-AM-09_55_04
Theory : reals
Home
Index