Nuprl Lemma : mdist-max-metric-mul

[n:ℕ]. ∀[p:ℝ^n]. ∀[c:ℝ].  (mdist(max-metric(n);c*p;λi.r0) (|c| mdist(max-metric(n);p;λi.r0)))


Proof




Definitions occuring in Statement :  max-metric: max-metric(n) real-vec-mul: a*X real-vec: ^n mdist: mdist(d;x;y) rabs: |x| req: y rmul: b int-to-real: r(n) real: nat: uall: [x:A]. B[x] lambda: λx.A[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] real-vec: ^n member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B nat: uiff: uiff(P;Q) uimplies: supposing a rev_uimplies: rev_uimplies(P;Q) req-vec: req-vec(n;x;y) all: x:A. B[x] real-vec-mul: a*X req_int_terms: t1 ≡ t2 false: False implies:  Q not: ¬A top: Top
Lemmas referenced :  int-to-real_wf int_seg_wf real_wf real-vec_wf istype-nat mdist_wf max-metric_wf real-vec-mul_wf rmul_wf rabs_wf meq-max-metric meq-same req_functionality req_weakening req_inversion mdist-max-metric-mul2 mdist_functionality itermSubtract_wf itermConstant_wf itermMultiply_wf itermVar_wf req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_const_lemma real_term_value_mul_lemma real_term_value_var_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalRule lambdaEquality_alt introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename productElimination hypothesis universeIsType natural_numberEquality hypothesisEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination lambdaFormation_alt dependent_functionElimination approximateComputation int_eqEquality isect_memberEquality_alt voidElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p:\mBbbR{}\^{}n].  \mforall{}[c:\mBbbR{}].    (mdist(max-metric(n);c*p;\mlambda{}i.r0)  =  (|c|  *  mdist(max-metric(n);p;\mlambda{}i.r0)))



Date html generated: 2019_10_30-AM-08_41_53
Last ObjectModification: 2019_10_02-AM-11_06_02

Theory : reals


Home Index