Nuprl Lemma : near-inverse-of-increasing-function-ext

f:ℝ ⟶ ℝ. ∀n,M:ℕ+. ∀z:ℝ. ∀a,b:ℤ.
  ∀k:ℕ+
    (∃c:ℤ(∃j:ℕ+ [((|f[(r(c))/j] z| ≤ (r1/r(n))) ∧ ((r(a))/k ≤ (r(c))/j) ∧ ((r(c))/j ≤ (r(b))/k))])) supposing 
       ((z ≤ f[(r(b))/k]) and 
       (f[(r(a))/k] ≤ z) and 
       (∀x,y:ℝ.
          (((r(a))/k ≤ x)
           (x < y)
           (y ≤ (r(b))/k)
           ((f[x] ≤ f[y]) ∧ (((y x) ≤ (r1/r(M)))  ((f[y] f[x]) ≤ (r1/r(n)))))))) 
  supposing a < b


Proof




Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y rless: x < y rabs: |x| int-rdiv: (a)/k1 rsub: y int-to-real: r(n) real: nat_plus: + less_than: a < b uimplies: supposing a so_apply: x[s] all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  member: t ∈ T subtract: m so_apply: x[s] genrec-ap: genrec-ap near-inverse-of-increasing-function decidable__le uniform-comp-nat-induction nearby-cases decidable__and decidable__not decidable__less_than' decidable__lt rleq_functionality_wrt_implies decidable__implies decidable__false any: any x decidable__squash decidable_functionality squash_elim sq_stable_from_decidable iff_preserves_decidability sq_stable__from_stable stable__from_decidable uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top uimplies: supposing a
Lemmas referenced :  near-inverse-of-increasing-function lifting-strict-decide istype-void strict4-decide lifting-strict-less lifting-strict-callbyvalue decidable__le uniform-comp-nat-induction nearby-cases decidable__and decidable__not decidable__less_than' decidable__lt rleq_functionality_wrt_implies decidable__implies decidable__false decidable__squash decidable_functionality squash_elim sq_stable_from_decidable iff_preserves_decidability sq_stable__from_stable stable__from_decidable
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality_alt voidElimination independent_isectElimination

Latex:
\mforall{}f:\mBbbR{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}n,M:\mBbbN{}\msupplus{}.  \mforall{}z:\mBbbR{}.  \mforall{}a,b:\mBbbZ{}.
    \mforall{}k:\mBbbN{}\msupplus{}
        (\mexists{}c:\mBbbZ{}
            (\mexists{}j:\mBbbN{}\msupplus{}  [((|f[(r(c))/j]  -  z|  \mleq{}  (r1/r(n)))
                          \mwedge{}  ((r(a))/k  \mleq{}  (r(c))/j)
                          \mwedge{}  ((r(c))/j  \mleq{}  (r(b))/k))]))  supposing 
              ((z  \mleq{}  f[(r(b))/k])  and 
              (f[(r(a))/k]  \mleq{}  z)  and 
              (\mforall{}x,y:\mBbbR{}.
                    (((r(a))/k  \mleq{}  x)
                    {}\mRightarrow{}  (x  <  y)
                    {}\mRightarrow{}  (y  \mleq{}  (r(b))/k)
                    {}\mRightarrow{}  ((f[x]  \mleq{}  f[y])  \mwedge{}  (((y  -  x)  \mleq{}  (r1/r(M)))  {}\mRightarrow{}  ((f[y]  -  f[x])  \mleq{}  (r1/r(n)))))))) 
    supposing  a  <  b



Date html generated: 2019_10_29-AM-10_07_00
Last ObjectModification: 2019_02_05-PM-04_47_42

Theory : reals


Home Index