Nuprl Lemma : near-inverse-of-increasing-function

f:ℝ ⟶ ℝ. ∀n,M:ℕ+. ∀z:ℝ. ∀a,b:ℤ.
  ∀k:ℕ+
    (∃c:ℤ(∃j:ℕ+ [((|f[(r(c))/j] z| ≤ (r1/r(n))) ∧ ((r(a))/k ≤ (r(c))/j) ∧ ((r(c))/j ≤ (r(b))/k))])) supposing 
       ((z ≤ f[(r(b))/k]) and 
       (f[(r(a))/k] ≤ z) and 
       (∀x,y:ℝ.
          (((r(a))/k ≤ x)
           (x < y)
           (y ≤ (r(b))/k)
           ((f[x] ≤ f[y]) ∧ (((y x) ≤ (r1/r(M)))  ((f[y] f[x]) ≤ (r1/r(n)))))))) 
  supposing a < b


Proof




Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y rless: x < y rabs: |x| int-rdiv: (a)/k1 rsub: y int-to-real: r(n) real: nat_plus: + less_than: a < b uimplies: supposing a so_apply: x[s] all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] uimplies: supposing a prop: nat_plus: + nat: implies:  Q subtype_rel: A ⊆B and: P ∧ Q so_apply: x[s] rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q rless: x < y sq_exists: x:A [B[x]] ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top le: A ≤ B rleq: x ≤ y rnonneg: rnonneg(x) int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T rdiv: (x/y) uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 true: True rev_uimplies: rev_uimplies(P;Q) cand: c∧ B rge: x ≥ y int_nzero: -o nequal: a ≠ b ∈  sq_type: SQType(T) real: sq_stable: SqStable(P)
Lemmas referenced :  real_wf nat_plus_wf uniform-comp-nat-induction all_wf isect_wf less_than_wf le_wf subtract_wf rleq_wf int-rdiv_wf nat_plus_inc_int_nzero int-to-real_wf rless_wf rsub_wf rdiv_wf rless-int nat_plus_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf exists_wf sq_exists_wf rabs_wf istype-le istype-less_than istype-nat member-less_than le_witness_for_triv decidable__le int_seg_wf int_seg_properties itermMultiply_wf itermSubtract_wf rinv_wf2 rmul_wf rmul_preserves_rless rleq_weakening_equal rless_functionality int-rdiv-req req_transitivity rmul_functionality req_weakening rmul-rinv req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma int_term_value_subtract_lemma int_term_value_minus_lemma int_term_value_add_lemma int_term_value_mul_lemma int_formula_prop_le_lemma intformle_wf rleq-int-fractions2 itermMinus_wf itermAdd_wf rminus_wf radd_wf rmul_preserves_rleq rleq_functionality rsub_functionality radd_functionality rminus_functionality squash_wf true_wf rminus-int radd-int rinv-mul-as-rdiv real_term_value_add_lemma real_term_value_minus_lemma rleq-implies-rleq rleq_functionality_wrt_implies rabs-of-nonneg radd-preserves-rleq mul_preserves_lt rleq-int-fractions set-value-type equal_wf int-value-type nearby-cases intformeq_wf int_formula_prop_eq_lemma int_subtype_base nequal_wf rleq_weakening_rless subtype_base_sq decidable__equal_int sq_stable__less_than mul_preserves_le nat_plus_subtype_nat int-rdiv-cancel subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut universeIsType introduction extract_by_obid hypothesis because_Cache functionIsType inhabitedIsType hypothesisEquality sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality_alt closedConclusion intEquality multiplyEquality setElimination rename functionEquality applyEquality productEquality natural_numberEquality independent_isectElimination inrFormation_alt dependent_functionElimination productElimination independent_functionElimination unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation productIsType isect_memberFormation_alt equalityTransitivity equalitySymmetry independent_pairEquality functionIsTypeImplies isectIsType imageElimination setIsType minusEquality addEquality imageMemberEquality baseClosed dependent_set_memberFormation_alt cutEval dependent_set_memberEquality_alt equalityIstype sqequalBase instantiate cumulativity promote_hyp baseApply universeEquality

Latex:
\mforall{}f:\mBbbR{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}n,M:\mBbbN{}\msupplus{}.  \mforall{}z:\mBbbR{}.  \mforall{}a,b:\mBbbZ{}.
    \mforall{}k:\mBbbN{}\msupplus{}
        (\mexists{}c:\mBbbZ{}
            (\mexists{}j:\mBbbN{}\msupplus{}  [((|f[(r(c))/j]  -  z|  \mleq{}  (r1/r(n)))
                          \mwedge{}  ((r(a))/k  \mleq{}  (r(c))/j)
                          \mwedge{}  ((r(c))/j  \mleq{}  (r(b))/k))]))  supposing 
              ((z  \mleq{}  f[(r(b))/k])  and 
              (f[(r(a))/k]  \mleq{}  z)  and 
              (\mforall{}x,y:\mBbbR{}.
                    (((r(a))/k  \mleq{}  x)
                    {}\mRightarrow{}  (x  <  y)
                    {}\mRightarrow{}  (y  \mleq{}  (r(b))/k)
                    {}\mRightarrow{}  ((f[x]  \mleq{}  f[y])  \mwedge{}  (((y  -  x)  \mleq{}  (r1/r(M)))  {}\mRightarrow{}  ((f[y]  -  f[x])  \mleq{}  (r1/r(n)))))))) 
    supposing  a  <  b



Date html generated: 2019_10_29-AM-10_06_47
Last ObjectModification: 2019_10_10-AM-10_23_54

Theory : reals


Home Index