Nuprl Lemma : partition-choice-indep-funtype
∀[I:Interval]
  ∀[p:partition(I)]. (partition-choice(full-partition(I;p)) ⊆r (ℕ||p|| + 1 ⟶ {x:ℝ| x ∈ I} )) supposing icompact(I)
Proof
Definitions occuring in Statement : 
partition-choice: partition-choice(p)
, 
full-partition: full-partition(I;p)
, 
partition: partition(I)
, 
icompact: icompact(I)
, 
i-member: r ∈ I
, 
interval: Interval
, 
real: ℝ
, 
length: ||as||
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
full-partition: full-partition(I;p)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
partition: partition(I)
, 
subtype_rel: A ⊆r B
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
and: P ∧ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
prop: ℙ
, 
icompact: icompact(I)
, 
partition-choice: partition-choice(p)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
uiff: uiff(P;Q)
, 
less_than: a < b
, 
l_all: (∀x∈L.P[x])
, 
subtract: n - m
, 
i-member: r ∈ I
, 
rccint: [l, u]
, 
guard: {T}
Lemmas referenced : 
length_of_cons_lemma, 
length_nil, 
non_neg_length, 
nil_wf, 
length_cons, 
real_wf, 
right-endpoint_wf, 
cons_wf, 
append_wf, 
length_append, 
subtype_rel_list, 
top_wf, 
length-append, 
length_of_nil_lemma, 
decidable__equal_int, 
length_wf, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
partition-choice_wf, 
full-partition_wf, 
partition_wf, 
icompact_wf, 
interval_wf, 
decidable__lt, 
subtract_wf, 
add-is-int-iff, 
intformand_wf, 
intformless_wf, 
itermSubtract_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_subtract_lemma, 
false_wf, 
lelt_wf, 
full-partition-point-member, 
add-member-int_seg2, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
select_wf, 
i-member-between, 
i-member_wf, 
rccint_wf, 
equal_wf, 
int_seg_properties, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
because_Cache, 
setElimination, 
rename, 
applyEquality, 
lambdaEquality, 
addEquality, 
natural_numberEquality, 
unionElimination, 
productElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
computeAll, 
axiomEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
independent_pairFormation, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_functionElimination, 
lambdaFormation, 
setEquality
Latex:
\mforall{}[I:Interval]
    \mforall{}[p:partition(I)].  (partition-choice(full-partition(I;p))  \msubseteq{}r  (\mBbbN{}||p||  +  1  {}\mrightarrow{}  \{x:\mBbbR{}|  x  \mmember{}  I\}  )) 
    supposing  icompact(I)
Date html generated:
2017_10_03-AM-09_44_54
Last ObjectModification:
2017_07_28-AM-07_58_43
Theory : reals
Home
Index