Nuprl Lemma : partition-choice-indep-funtype

[I:Interval]
  ∀[p:partition(I)]. (partition-choice(full-partition(I;p)) ⊆(ℕ||p|| 1 ⟶ {x:ℝx ∈ I} )) supposing icompact(I)


Proof




Definitions occuring in Statement :  partition-choice: partition-choice(p) full-partition: full-partition(I;p) partition: partition(I) icompact: icompact(I) i-member: r ∈ I interval: Interval real: length: ||as|| int_seg: {i..j-} uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a full-partition: full-partition(I;p) all: x:A. B[x] top: Top partition: partition(I) subtype_rel: A ⊆B ge: i ≥  decidable: Dec(P) or: P ∨ Q le: A ≤ B and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A prop: icompact: icompact(I) partition-choice: partition-choice(p) int_seg: {i..j-} lelt: i ≤ j < k uiff: uiff(P;Q) less_than: a < b l_all: (∀x∈L.P[x]) subtract: m i-member: r ∈ I rccint: [l, u] guard: {T}
Lemmas referenced :  length_of_cons_lemma length_nil non_neg_length nil_wf length_cons real_wf right-endpoint_wf cons_wf append_wf length_append subtype_rel_list top_wf length-append length_of_nil_lemma decidable__equal_int length_wf satisfiable-full-omega-tt intformnot_wf intformeq_wf itermAdd_wf itermVar_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf partition-choice_wf full-partition_wf partition_wf icompact_wf interval_wf decidable__lt subtract_wf add-is-int-iff intformand_wf intformless_wf itermSubtract_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_subtract_lemma false_wf lelt_wf full-partition-point-member add-member-int_seg2 decidable__le intformle_wf int_formula_prop_le_lemma select_wf i-member-between i-member_wf rccint_wf equal_wf int_seg_properties int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination hypothesisEquality independent_isectElimination because_Cache setElimination rename applyEquality lambdaEquality addEquality natural_numberEquality unionElimination productElimination dependent_pairFormation int_eqEquality intEquality equalityTransitivity equalitySymmetry computeAll axiomEquality functionExtensionality dependent_set_memberEquality independent_pairFormation pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed independent_functionElimination lambdaFormation setEquality

Latex:
\mforall{}[I:Interval]
    \mforall{}[p:partition(I)].  (partition-choice(full-partition(I;p))  \msubseteq{}r  (\mBbbN{}||p||  +  1  {}\mrightarrow{}  \{x:\mBbbR{}|  x  \mmember{}  I\}  )) 
    supposing  icompact(I)



Date html generated: 2017_10_03-AM-09_44_54
Last ObjectModification: 2017_07_28-AM-07_58_43

Theory : reals


Home Index