Nuprl Lemma : poly-deriv-linear

n:ℕ. ∀a,b:ℕ1 ⟶ ℝ. ∀c,d:ℝ. ∀i:ℕn.
  ((poly-deriv(λi.((c (a i)) (d (b i)))) i) ((c (poly-deriv(a) i)) (d (poly-deriv(b) i))))


Proof




Definitions occuring in Statement :  poly-deriv: poly-deriv(a) req: y rmul: b radd: b real: int_seg: {i..j-} nat: all: x:A. B[x] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  less_than: a < b le: A ≤ B prop: subtract: m top: Top not: ¬A implies:  Q false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  lelt: i ≤ j < k uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T poly-deriv: poly-deriv(a) all: x:A. B[x] rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  rmul-ac req_transitivity rmul_comm rmul_functionality radd_functionality rmul-distrib req_functionality uiff_transitivity int_seg_wf real_wf nat_wf req_wf rmul_wf int-to-real_wf radd_wf add-member-int_seg2 nat_properties decidable__le subtract_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermSubtract_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf add-subtract-cancel decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf req_weakening
Rules used in proof :  introduction computeAll voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality dependent_pairFormation unionElimination dependent_functionElimination independent_pairFormation dependent_set_memberEquality independent_isectElimination productElimination because_Cache applyEquality addEquality functionEquality hypothesis hypothesisEquality rename setElimination natural_numberEquality thin isectElimination sqequalHypSubstitution lemma_by_obid cut sqequalRule lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}.  \mforall{}c,d:\mBbbR{}.  \mforall{}i:\mBbbN{}n.
    ((poly-deriv(\mlambda{}i.((c  *  (a  i))  +  (d  *  (b  i))))  i)
    =  ((c  *  (poly-deriv(a)  i))  +  (d  *  (poly-deriv(b)  i))))



Date html generated: 2016_05_18-AM-10_08_19
Last ObjectModification: 2016_01_17-AM-00_38_41

Theory : reals


Home Index