Nuprl Lemma : prod2-metric_wf

[X,Y:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)].  (prod2-metric(dX;dY) ∈ metric(X × Y))


Proof




Definitions occuring in Statement :  prod2-metric: prod2-metric(dX;dY) metric: metric(X) uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T metric: metric(X) prod2-metric: prod2-metric(dX;dY) and: P ∧ Q cand: c∧ B all: x:A. B[x] implies:  Q prop: uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top
Lemmas referenced :  radd_wf mdist_wf radd-non-neg mdist-nonneg rleq_wf int-to-real_wf req_wf metric_wf istype-universe radd-zero req_functionality radd_functionality mdist-same req_weakening itermSubtract_wf itermAdd_wf itermVar_wf req-iff-rsub-is-0 radd_functionality_wrt_rleq mdist-triangle-inequality real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_add_lemma real_term_value_var_lemma real_term_value_const_lemma rleq_functionality mdist-symm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt dependent_set_memberEquality_alt lambdaEquality_alt spreadEquality hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis inhabitedIsType productIsType universeIsType lambdaFormation_alt sqequalRule productElimination dependent_functionElimination independent_functionElimination independent_pairFormation because_Cache functionIsType natural_numberEquality applyEquality instantiate universeEquality independent_isectElimination approximateComputation int_eqEquality isect_memberEquality_alt voidElimination

Latex:
\mforall{}[X,Y:Type].  \mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].    (prod2-metric(dX;dY)  \mmember{}  metric(X  \mtimes{}  Y))



Date html generated: 2019_10_29-AM-11_10_36
Last ObjectModification: 2019_10_02-AM-09_51_18

Theory : reals


Home Index