Nuprl Lemma : prod2-metric_wf
∀[X,Y:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)].  (prod2-metric(dX;dY) ∈ metric(X × Y))
Proof
Definitions occuring in Statement : 
prod2-metric: prod2-metric(dX;dY)
, 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
metric: metric(X)
, 
prod2-metric: prod2-metric(dX;dY)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
radd_wf, 
mdist_wf, 
radd-non-neg, 
mdist-nonneg, 
rleq_wf, 
int-to-real_wf, 
req_wf, 
metric_wf, 
istype-universe, 
radd-zero, 
req_functionality, 
radd_functionality, 
mdist-same, 
req_weakening, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
radd_functionality_wrt_rleq, 
mdist-triangle-inequality, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rleq_functionality, 
mdist-symm
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
spreadEquality, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
inhabitedIsType, 
productIsType, 
universeIsType, 
lambdaFormation_alt, 
sqequalRule, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation, 
because_Cache, 
functionIsType, 
natural_numberEquality, 
applyEquality, 
instantiate, 
universeEquality, 
independent_isectElimination, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination
Latex:
\mforall{}[X,Y:Type].  \mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].    (prod2-metric(dX;dY)  \mmember{}  metric(X  \mtimes{}  Y))
Date html generated:
2019_10_29-AM-11_10_36
Last ObjectModification:
2019_10_02-AM-09_51_18
Theory : reals
Home
Index