Nuprl Lemma : r-archimedean-implies

x:ℝ. ∀m:ℕ+.  ∃M:ℕ+(((r1/r(M)) x) ≤ (r1/r(m)))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y rmul: b int-to-real: r(n) real: nat_plus: + all: x:A. B[x] exists: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat_plus: + exists: x:A. B[x] and: P ∧ Q nat: le: A ≤ B decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False prop: uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True rneq: x ≠ y guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) rless: x < y sq_exists: x:{A| B[x]} rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  nat_plus_wf real_wf r-archimedean rmul_wf int-to-real_wf decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf rleq_wf rdiv_wf rless-int nat_plus_properties nat_properties satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf rleq-int decidable__le intformle_wf itermAdd_wf int_formula_prop_le_lemma int_term_value_add_lemma rleq_transitivity equal_wf rmul_preserves_rleq req_wf req_weakening uiff_transitivity rleq_functionality rmul-rdiv-cancel2 req_inversion rmul-assoc rmul_functionality rmul_comm req_functionality req_transitivity rmul-ac rmul-rdiv-cancel rmul-one-both
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid hypothesis sqequalHypSubstitution dependent_functionElimination thin isectElimination setElimination rename hypothesisEquality productElimination dependent_pairFormation dependent_set_memberEquality addEquality natural_numberEquality unionElimination independent_pairFormation voidElimination independent_functionElimination independent_isectElimination sqequalRule applyEquality lambdaEquality isect_memberEquality voidEquality intEquality because_Cache minusEquality inrFormation int_eqEquality computeAll equalityTransitivity equalitySymmetry

Latex:
\mforall{}x:\mBbbR{}.  \mforall{}m:\mBbbN{}\msupplus{}.    \mexists{}M:\mBbbN{}\msupplus{}.  (((r1/r(M))  *  x)  \mleq{}  (r1/r(m)))



Date html generated: 2017_10_03-AM-09_22_30
Last ObjectModification: 2017_07_28-AM-07_45_48

Theory : reals


Home Index