Nuprl Lemma : r-strict-bound-property
∀x:ℝ. ((r(-(r-bound(x) + 1)) < x) ∧ (x < r(r-bound(x) + 1)))
Proof
Definitions occuring in Statement : 
r-bound: r-bound(x), 
rless: x < y, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
add: n + m, 
minus: -n, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
and: P ∧ Q, 
cand: A c∧ B, 
top: Top, 
subtype_rel: A ⊆r B, 
nat_plus: ℕ+, 
rev_implies: P ⇐ Q, 
uimplies: b supposing a, 
rge: x ≥ y, 
guard: {T}, 
implies: P ⇒ Q, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
uiff: uiff(P;Q)
Lemmas referenced : 
r-bound-property, 
real_wf, 
minus-add, 
int-to-real_wf, 
r-bound_wf, 
nat_plus_wf, 
radd_wf, 
rless_functionality_wrt_implies, 
rleq_weakening, 
req_inversion, 
radd-int, 
equal_wf, 
radd-preserves-rless, 
rminus_wf, 
rless-int, 
rmul_wf, 
rless_wf, 
rless_functionality, 
radd-zero-both, 
req_weakening, 
radd_comm, 
radd_functionality, 
rmul-zero-both, 
rmul_functionality, 
req_transitivity, 
rminus-as-rmul, 
radd-assoc, 
rmul-identity1, 
rmul-distrib2, 
trivial-rless-radd
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_pairFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
addEquality, 
minusEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
natural_numberEquality, 
because_Cache, 
dependent_functionElimination, 
independent_isectElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
addLevel, 
levelHypothesis
Latex:
\mforall{}x:\mBbbR{}.  ((r(-(r-bound(x)  +  1))  <  x)  \mwedge{}  (x  <  r(r-bound(x)  +  1)))
Date html generated:
2017_10_03-AM-08_53_12
Last ObjectModification:
2017_07_28-AM-07_35_49
Theory : reals
Home
Index