Nuprl Lemma : r-bound-property
∀[x:ℝ]. ((r(-r-bound(x)) ≤ x) ∧ (x ≤ r(r-bound(x))))
Proof
Definitions occuring in Statement : 
r-bound: r-bound(x)
, 
rleq: x ≤ y
, 
int-to-real: r(n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
minus: -n
Definitions unfolded in proof : 
guard: {T}
, 
rge: x ≥ y
, 
rev_uimplies: rev_uimplies(P;Q)
, 
top: Top
, 
req_int_terms: t1 ≡ t2
, 
uiff: uiff(P;Q)
, 
less_than': less_than'(a;b)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
uimplies: b supposing a
, 
real: ℝ
, 
false: False
, 
not: ¬A
, 
le: A ≤ B
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
pi1: fst(t)
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
nat_plus: ℕ+
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
r-bound: r-bound(x)
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rleq_transitivity, 
rleq_weakening_equal, 
rleq_functionality_wrt_implies, 
rabs-bounds, 
real_term_value_minus_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_mul_lemma, 
real_term_value_sub_lemma, 
real_polynomial_null, 
rminus-int, 
req_weakening, 
req_transitivity, 
rleq_functionality, 
req-iff-rsub-is-0, 
itermMinus_wf, 
itermConstant_wf, 
itermVar_wf, 
itermMultiply_wf, 
itermSubtract_wf, 
rminus_wf, 
rmul_wf, 
false_wf, 
rleq-int, 
rmul_reverses_rleq, 
r-bound_wf, 
rsub_wf, 
less_than'_wf, 
equal_wf, 
int-to-real_wf, 
rabs_wf, 
rleq_wf, 
nat_plus_wf, 
exists_wf, 
real_wf, 
subtype_rel_self, 
integer-bound
Rules used in proof : 
voidEquality, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
approximateComputation, 
independent_isectElimination, 
axiomEquality, 
natural_numberEquality, 
minusEquality, 
voidElimination, 
independent_pairEquality, 
independent_pairFormation, 
independent_functionElimination, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
productElimination, 
lambdaFormation, 
because_Cache, 
rename, 
setElimination, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
isectElimination, 
sqequalHypSubstitution, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
thin, 
applyEquality, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[x:\mBbbR{}].  ((r(-r-bound(x))  \mleq{}  x)  \mwedge{}  (x  \mleq{}  r(r-bound(x))))
Date html generated:
2018_05_22-PM-01_50_40
Last ObjectModification:
2018_05_21-AM-00_09_25
Theory : reals
Home
Index