Nuprl Lemma : rabs-int-rmul-unit
∀[k:ℕ]. ∀[x:ℝ].  (|-1^k * x| = |x|)
Proof
Definitions occuring in Statement : 
rabs: |x|
, 
int-rmul: k1 * a
, 
req: x = y
, 
real: ℝ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
minus: -n
, 
natural_number: $n
, 
fastexp: i^n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
sq_type: SQType(T)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
prop: ℙ
, 
true: True
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
nat_plus: ℕ+
, 
absval: |i|
Lemmas referenced : 
req_witness, 
rabs_wf, 
int-rmul_wf, 
fastexp_wf, 
real_wf, 
nat_wf, 
absval_wf, 
req_functionality, 
rabs-int-rmul, 
req_weakening, 
absval_exp, 
exp-fastexp, 
iff_weakening_equal, 
exp-one, 
true_wf, 
squash_wf, 
equal_wf, 
exp-positive-stronger, 
int_subtype_base, 
less_than_wf, 
set_subtype_base, 
nat_plus_wf, 
subtype_base_sq, 
int-rmul-one
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
minusEquality, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
independent_isectElimination, 
productElimination, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
dependent_functionElimination, 
intEquality, 
cumulativity, 
instantiate
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[x:\mBbbR{}].    (|-1\^{}k  *  x|  =  |x|)
Date html generated:
2017_10_03-AM-08_29_05
Last ObjectModification:
2017_07_28-AM-07_25_41
Theory : reals
Home
Index