Nuprl Lemma : radd-list_wf
∀[L:ℝ List]. (radd-list(L) ∈ ℝ)
Proof
Definitions occuring in Statement : 
radd-list: radd-list(L)
, 
real: ℝ
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
radd-list: radd-list(L)
, 
callbyvalueall: callbyvalueall, 
uimplies: b supposing a
, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
nequal: a ≠ b ∈ T 
, 
decidable: Dec(P)
, 
le: A ≤ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
real-list-has-valueall, 
evalall-reduce, 
list_wf, 
real_wf, 
valueall-type-real-list, 
value-type-has-value, 
nat_wf, 
set-value-type, 
le_wf, 
int-value-type, 
length_wf_nat, 
eq_int_wf, 
length_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
int-to-real_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
accelerate_wf, 
non_neg_length, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
less_than_wf, 
reg-seq-list-add_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
callbyvalueReduce, 
independent_isectElimination, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
because_Cache, 
voidElimination, 
dependent_set_memberEquality, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
axiomEquality
Latex:
\mforall{}[L:\mBbbR{}  List].  (radd-list(L)  \mmember{}  \mBbbR{})
Date html generated:
2017_10_02-PM-07_14_07
Last ObjectModification:
2017_07_28-AM-07_20_11
Theory : reals
Home
Index