Nuprl Lemma : rat_term_to_ipolys_wf
∀[t:rat_term()]. (rat_term_to_ipolys(t) ∈ iPolynomial() × iPolynomial())
Proof
Definitions occuring in Statement : 
rat_term_to_ipolys: rat_term_to_ipolys(t)
, 
rat_term: rat_term()
, 
iPolynomial: iPolynomial()
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
iMonomial: iMonomial()
, 
member: t ∈ T
, 
int_nzero: ℤ-o
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
false: False
, 
prop: ℙ
, 
sorted: sorted(L)
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
iPolynomial: iPolynomial()
, 
rat_term_to_ipolys: rat_term_to_ipolys(t)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
istype-int, 
nequal_wf, 
nil_wf, 
stuck-spread, 
istype-base, 
istype-void, 
length_of_nil_lemma, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
intformnot_wf, 
int_formula_prop_not_lemma, 
int_seg_wf, 
sorted_wf, 
cons_wf, 
iMonomial_wf, 
length_of_cons_lemma, 
length_wf, 
imonomial-less_wf, 
select_wf, 
decidable__lt, 
rat_term_wf, 
add_ipoly_wf, 
mul_ipoly_wf, 
minus-poly_wf, 
rat_term_ind_wf_simple, 
iPolynomial_wf, 
decidable__equal_int, 
le_weakening2, 
itermAdd_wf, 
int_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
independent_pairEquality, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
lambdaFormation_alt, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
equalityIstype, 
baseClosed, 
sqequalBase, 
universeIsType, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality_alt, 
setElimination, 
rename, 
productElimination, 
imageElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
independent_pairFormation, 
because_Cache, 
unionElimination, 
functionIsType, 
inhabitedIsType, 
productIsType, 
productEquality, 
int_eqReduceFalseSq, 
closedConclusion
Latex:
\mforall{}[t:rat\_term()].  (rat\_term\_to\_ipolys(t)  \mmember{}  iPolynomial()  \mtimes{}  iPolynomial())
Date html generated:
2019_10_29-AM-09_31_27
Last ObjectModification:
2019_04_01-AM-10_43_51
Theory : reals
Home
Index