Nuprl Lemma : rat_term_to_ipolys_wf

[t:rat_term()]. (rat_term_to_ipolys(t) ∈ iPolynomial() × iPolynomial())


Proof




Definitions occuring in Statement :  rat_term_to_ipolys: rat_term_to_ipolys(t) rat_term: rat_term() iPolynomial: iPolynomial() uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] iMonomial: iMonomial() member: t ∈ T int_nzero: -o true: True nequal: a ≠ b ∈  not: ¬A implies:  Q uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] guard: {T} false: False prop: sorted: sorted(L) select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B iPolynomial: iPolynomial() rat_term_to_ipolys: rat_term_to_ipolys(t) so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4]
Lemmas referenced :  subtype_base_sq int_subtype_base istype-int nequal_wf nil_wf stuck-spread istype-base istype-void length_of_nil_lemma int_seg_properties decidable__le full-omega-unsat intformand_wf intformless_wf itermVar_wf intformle_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf intformnot_wf int_formula_prop_not_lemma int_seg_wf sorted_wf cons_wf iMonomial_wf length_of_cons_lemma length_wf imonomial-less_wf select_wf decidable__lt rat_term_wf add_ipoly_wf mul_ipoly_wf minus-poly_wf rat_term_ind_wf_simple iPolynomial_wf decidable__equal_int le_weakening2 itermAdd_wf int_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut independent_pairEquality dependent_set_memberEquality_alt natural_numberEquality lambdaFormation_alt thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination equalityIstype baseClosed sqequalBase universeIsType hypothesisEquality sqequalRule isect_memberEquality_alt setElimination rename productElimination imageElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality independent_pairFormation because_Cache unionElimination functionIsType inhabitedIsType productIsType productEquality int_eqReduceFalseSq closedConclusion

Latex:
\mforall{}[t:rat\_term()].  (rat\_term\_to\_ipolys(t)  \mmember{}  iPolynomial()  \mtimes{}  iPolynomial())



Date html generated: 2019_10_29-AM-09_31_27
Last ObjectModification: 2019_04_01-AM-10_43_51

Theory : reals


Home Index