Nuprl Lemma : rational-approx-converges-to
∀[x:ℝ]. lim n→∞.(x within 1/n + 1) = x
Proof
Definitions occuring in Statement : 
converges-to: lim n→∞.x[n] = y
, 
rational-approx: (x within 1/n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
converges-to: lim n→∞.x[n] = y
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
real: ℝ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtract: n - m
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
rneq: x ≠ y
, 
guard: {T}
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
Lemmas referenced : 
nat_plus_subtype_nat, 
le_wf, 
nat_wf, 
all_wf, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
rational-approx_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_properties, 
nat_plus_properties, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
nat_plus_wf, 
real_wf, 
less-iff-le, 
add-swap, 
itermAdd_wf, 
intformle_wf, 
int_term_value_add_lemma, 
int_formula_prop_le_lemma, 
rleq-int-fractions, 
decidable__le, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
rleq_functionality, 
rabs-difference-symmetry, 
req_weakening, 
rleq_functionality_wrt_implies, 
rational-approx-property, 
rleq_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
dependent_set_memberFormation, 
cut, 
hypothesisEquality, 
applyEquality, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
sqequalRule, 
isectElimination, 
thin, 
setElimination, 
rename, 
lambdaEquality, 
functionEquality, 
because_Cache, 
dependent_set_memberEquality, 
addEquality, 
natural_numberEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
isect_memberEquality, 
voidEquality, 
intEquality, 
minusEquality, 
inrFormation, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
multiplyEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[x:\mBbbR{}].  lim  n\mrightarrow{}\minfty{}.(x  within  1/n  +  1)  =  x
Date html generated:
2017_10_03-AM-08_51_34
Last ObjectModification:
2017_06_30-PM-04_10_52
Theory : reals
Home
Index