Nuprl Lemma : rational-approx-converges-to

[x:ℝ]. lim n→∞.(x within 1/n 1) x


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y rational-approx: (x within 1/n) real: uall: [x:A]. B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] converges-to: lim n→∞.x[n] y all: x:A. B[x] sq_exists: x:{A| B[x]} member: t ∈ T subtype_rel: A ⊆B implies:  Q prop: nat_plus: + nat: so_lambda: λ2x.t[x] real: le: A ≤ B and: P ∧ Q decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a subtract: m top: Top less_than': less_than'(a;b) true: True rneq: x ≠ y guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] so_apply: x[s] rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y
Lemmas referenced :  nat_plus_subtype_nat le_wf nat_wf all_wf rleq_wf rabs_wf rsub_wf rational-approx_wf decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf rdiv_wf int-to-real_wf rless-int nat_properties nat_plus_properties full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf nat_plus_wf real_wf less-iff-le add-swap itermAdd_wf intformle_wf int_term_value_add_lemma int_formula_prop_le_lemma rleq-int-fractions decidable__le itermMultiply_wf int_term_value_mul_lemma rleq_functionality rabs-difference-symmetry req_weakening rleq_functionality_wrt_implies rational-approx-property rleq_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation dependent_set_memberFormation cut hypothesisEquality applyEquality introduction extract_by_obid hypothesis sqequalHypSubstitution sqequalRule isectElimination thin setElimination rename lambdaEquality functionEquality because_Cache dependent_set_memberEquality addEquality natural_numberEquality productElimination dependent_functionElimination unionElimination independent_pairFormation voidElimination independent_functionElimination independent_isectElimination isect_memberEquality voidEquality intEquality minusEquality inrFormation approximateComputation dependent_pairFormation int_eqEquality multiplyEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[x:\mBbbR{}].  lim  n\mrightarrow{}\minfty{}.(x  within  1/n  +  1)  =  x



Date html generated: 2017_10_03-AM-08_51_34
Last ObjectModification: 2017_06_30-PM-04_10_52

Theory : reals


Home Index