Nuprl Lemma : real-vec-angle-lemma2

n:ℕ. ∀x,z:ℝ^n.  (d(z;r(-1)*x) < d(z;x) ⇐⇒ x⋅z < r0)


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) dot-product: x⋅y real-vec-mul: a*X real-vec: ^n rless: x < y int-to-real: r(n) nat: all: x:A. B[x] iff: ⇐⇒ Q minus: -n natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] req-vec: req-vec(n;x;y) real-vec-mul: a*X iff: ⇐⇒ Q and: P ∧ Q nat: real-vec: ^n uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B prop: req_int_terms: t1 ≡ t2 false: False implies:  Q not: ¬A top: Top rev_implies:  Q
Lemmas referenced :  real-vec-angle-lemma real-vec-mul_wf int-to-real_wf real-vec_wf nat_wf int_seg_wf rmul_wf itermSubtract_wf itermMultiply_wf itermConstant_wf itermVar_wf req-iff-rsub-is-0 real-vec-dist_wf real_wf rleq_wf rless_wf dot-product_wf real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_const_lemma real_term_value_var_lemma rless_functionality req_weakening real-vec-dist_functionality req-vec_weakening iff_wf rless-implies-rless rsub_wf dot-product-linearity2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination minusEquality natural_numberEquality hypothesis because_Cache sqequalRule productElimination setElimination rename applyEquality independent_isectElimination lambdaEquality setEquality approximateComputation int_eqEquality equalityTransitivity equalitySymmetry intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation independent_functionElimination promote_hyp addLevel impliesFunctionality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,z:\mBbbR{}\^{}n.    (d(z;r(-1)*x)  <  d(z;x)  \mLeftarrow{}{}\mRightarrow{}  x\mcdot{}z  <  r0)



Date html generated: 2018_05_22-PM-02_26_09
Last ObjectModification: 2018_03_27-PM-10_53_30

Theory : reals


Home Index