Nuprl Lemma : real-vec-sep-add
∀n:ℕ. ∀x,x',y,y':ℝ^n.  (x + y ≠ x' + y' 
⇒ (x ≠ x' ∨ y ≠ y'))
Proof
Definitions occuring in Statement : 
real-vec-sep: a ≠ b
, 
real-vec-add: X + Y
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
real-vec: ℝ^n
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
real-vec-add: X + Y
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
rge: x ≥ y
, 
guard: {T}
Lemmas referenced : 
real-vec-sep-iff, 
real-vec-add_wf, 
real-vec-sep_wf, 
or_wf, 
exists_wf, 
int_seg_wf, 
rless_wf, 
int-to-real_wf, 
rabs_wf, 
rsub_wf, 
real-vec_wf, 
nat_wf, 
real_term_polynomial, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
radd_wf, 
rless_functionality, 
req_weakening, 
rabs_functionality, 
radd-positive-implies, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
r-triangle-inequality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
productElimination, 
independent_functionElimination, 
addLevel, 
orFunctionality, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
computeAll, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
inlFormation, 
dependent_pairFormation, 
inrFormation
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,x',y,y':\mBbbR{}\^{}n.    (x  +  y  \mneq{}  x'  +  y'  {}\mRightarrow{}  (x  \mneq{}  x'  \mvee{}  y  \mneq{}  y'))
Date html generated:
2017_10_03-AM-11_01_20
Last ObjectModification:
2017_04_07-PM-01_57_46
Theory : reals
Home
Index