Nuprl Lemma : real-vec-sep-add

n:ℕ. ∀x,x',y,y':ℝ^n.  (x y ≠ x' y'  (x ≠ x' ∨ y ≠ y'))


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b real-vec-add: Y real-vec: ^n nat: all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] rev_implies:  Q prop: nat: so_lambda: λ2x.t[x] real-vec: ^n so_apply: x[s] or: P ∨ Q real-vec-add: Y itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top uiff: uiff(P;Q) uimplies: supposing a rge: x ≥ y guard: {T}
Lemmas referenced :  real-vec-sep-iff real-vec-add_wf real-vec-sep_wf or_wf exists_wf int_seg_wf rless_wf int-to-real_wf rabs_wf rsub_wf real-vec_wf nat_wf real_term_polynomial itermSubtract_wf itermAdd_wf itermVar_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma req-iff-rsub-is-0 radd_wf rless_functionality req_weakening rabs_functionality radd-positive-implies rless_functionality_wrt_implies rleq_weakening_equal r-triangle-inequality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination hypothesis productElimination independent_functionElimination addLevel orFunctionality natural_numberEquality setElimination rename because_Cache sqequalRule lambdaEquality applyEquality computeAll int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_isectElimination equalityTransitivity equalitySymmetry unionElimination inlFormation dependent_pairFormation inrFormation

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}x,x',y,y':\mBbbR{}\^{}n.    (x  +  y  \mneq{}  x'  +  y'  {}\mRightarrow{}  (x  \mneq{}  x'  \mvee{}  y  \mneq{}  y'))



Date html generated: 2017_10_03-AM-11_01_20
Last ObjectModification: 2017_04_07-PM-01_57_46

Theory : reals


Home Index