Nuprl Lemma : rmax-positive

x,y:ℝ.  ((rpositive(x) ∨ rpositive(y))  rpositive(rmax(x;y)))


Proof




Definitions occuring in Statement :  rpositive: rpositive(x) rmax: rmax(x;y) real: all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q or: P ∨ Q rpositive2: rpositive2(x) exists: x:A. B[x] member: t ∈ T rmax: rmax(x;y) squash: T uall: [x:A]. B[x] prop: nat_plus: + real: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  le_wf squash_wf true_wf imax_unfold iff_weakening_equal le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot nat_plus_wf all_wf rmax_wf or_wf rpositive2_wf rpositive-iff rpositive_wf real_wf mul_preserves_le nat_plus_subtype_nat nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf itermMultiply_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_mul_lemma int_formula_prop_wf mul_cancel_in_le less_than_wf multiply-is-int-iff false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution unionElimination thin productElimination dependent_pairFormation hypothesisEquality hypothesis dependent_functionElimination independent_functionElimination sqequalRule applyEquality lambdaEquality imageElimination introduction extract_by_obid isectElimination equalityTransitivity equalitySymmetry intEquality setElimination rename multiplyEquality because_Cache natural_numberEquality imageMemberEquality baseClosed universeEquality independent_isectElimination equalityElimination promote_hyp instantiate cumulativity voidElimination functionEquality addLevel impliesFunctionality orFunctionality orLevelFunctionality int_eqEquality isect_memberEquality voidEquality independent_pairFormation computeAll dependent_set_memberEquality pointwiseFunctionality baseApply closedConclusion

Latex:
\mforall{}x,y:\mBbbR{}.    ((rpositive(x)  \mvee{}  rpositive(y))  {}\mRightarrow{}  rpositive(rmax(x;y)))



Date html generated: 2017_10_03-AM-08_24_20
Last ObjectModification: 2017_07_28-AM-07_23_16

Theory : reals


Home Index