Nuprl Lemma : rmaximum-shift

[k,n,m:ℤ]. ∀[x:Top].  rmaximum(n;m;i.x[i]) rmaximum(n k;m k;i.x[i k]) supposing n ≤ m


Proof




Definitions occuring in Statement :  rmaximum: rmaximum(n;m;k.x[k]) uimplies: supposing a uall: [x:A]. B[x] top: Top so_apply: x[s] le: A ≤ B subtract: m add: m int: sqequal: t
Definitions unfolded in proof :  rmaximum: rmaximum(n;m;k.x[k]) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: sq_type: SQType(T) guard: {T} nat: and: P ∧ Q ge: i ≥  eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  subtype_base_sq int_subtype_base decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermSubtract_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le intformand_wf intformle_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma le_wf nat_wf nat_properties intformless_wf int_formula_prop_less_lemma ge_wf less_than_wf subtract_wf equal_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int subtract-add-cancel eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int itermAdd_wf int_term_value_add_lemma top_wf primrec-unroll
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis dependent_functionElimination because_Cache unionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality hypothesisEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll equalityTransitivity equalitySymmetry independent_functionElimination dependent_set_memberEquality independent_pairFormation lambdaFormation setElimination rename intWeakElimination sqequalAxiom equalityElimination productElimination promote_hyp isect_memberFormation

Latex:
\mforall{}[k,n,m:\mBbbZ{}].  \mforall{}[x:Top].    rmaximum(n;m;i.x[i])  \msim{}  rmaximum(n  -  k;m  -  k;i.x[i  +  k])  supposing  n  \mleq{}  m



Date html generated: 2017_10_03-AM-09_02_46
Last ObjectModification: 2017_07_28-AM-07_40_24

Theory : reals


Home Index