Nuprl Lemma : rmetric-meq

[x,y:ℝ].  uiff(x ≡ y;x y)


Proof




Definitions occuring in Statement :  rmetric: rmetric() meq: x ≡ y req: y real: uiff: uiff(P;Q) uall: [x:A]. B[x]
Definitions unfolded in proof :  rmetric: rmetric() meq: x ≡ y uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] iff: ⇐⇒ Q implies:  Q prop: decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top false: False rev_uimplies: rev_uimplies(P;Q) absval: |i| req_int_terms: t1 ≡ t2
Lemmas referenced :  rabs-difference-is-zero req_witness req_wf rabs_wf rsub_wf int-to-real_wf real_wf itermSubtract_wf itermVar_wf itermConstant_wf req-int decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf req_functionality rabs_functionality rsub_functionality req_weakening req_transitivity rabs-int req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule isect_memberFormation_alt introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination independent_functionElimination hypothesis isectElimination universeIsType natural_numberEquality independent_pairEquality isect_memberEquality_alt because_Cache isectIsTypeImplies inhabitedIsType minusEquality independent_isectElimination unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt voidElimination int_eqEquality

Latex:
\mforall{}[x,y:\mBbbR{}].    uiff(x  \mequiv{}  y;x  =  y)



Date html generated: 2019_10_29-AM-11_03_33
Last ObjectModification: 2019_10_02-AM-09_44_19

Theory : reals


Home Index