Nuprl Lemma : rmetric-meq
∀[x,y:ℝ].  uiff(x ≡ y;x = y)
Proof
Definitions occuring in Statement : 
rmetric: rmetric()
, 
meq: x ≡ y
, 
req: x = y
, 
real: ℝ
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
rmetric: rmetric()
, 
meq: x ≡ y
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
false: False
, 
rev_uimplies: rev_uimplies(P;Q)
, 
absval: |i|
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
rabs-difference-is-zero, 
req_witness, 
req_wf, 
rabs_wf, 
rsub_wf, 
int-to-real_wf, 
real_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermConstant_wf, 
req-int, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
req_functionality, 
rabs_functionality, 
rsub_functionality, 
req_weakening, 
req_transitivity, 
rabs-int, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
hypothesis, 
isectElimination, 
universeIsType, 
natural_numberEquality, 
independent_pairEquality, 
isect_memberEquality_alt, 
because_Cache, 
isectIsTypeImplies, 
inhabitedIsType, 
minusEquality, 
independent_isectElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
voidElimination, 
int_eqEquality
Latex:
\mforall{}[x,y:\mBbbR{}].    uiff(x  \mequiv{}  y;x  =  y)
Date html generated:
2019_10_29-AM-11_03_33
Last ObjectModification:
2019_10_02-AM-09_44_19
Theory : reals
Home
Index