Nuprl Lemma : rnexp-req-iff-odd
∀n:ℕ+. ∀x,y:ℝ.  ((↑isOdd(n)) 
⇒ (x = y 
⇐⇒ x^n = y^n))
Proof
Definitions occuring in Statement : 
rnexp: x^k1
, 
req: x = y
, 
real: ℝ
, 
isOdd: isOdd(n)
, 
nat_plus: ℕ+
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
false: False
, 
nat_plus: ℕ+
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_wf, 
rleq_antisymmetry, 
not-rless, 
rnexp-rless-odd, 
rless_transitivity1, 
rnexp_wf, 
rleq_weakening, 
rless_irreflexivity, 
rless_wf, 
req_inversion, 
nat_plus_subtype_nat, 
assert_wf, 
isOdd_wf, 
real_wf, 
nat_plus_wf, 
req_weakening, 
req_functionality, 
rnexp_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
because_Cache, 
dependent_functionElimination, 
independent_functionElimination, 
applyEquality, 
sqequalRule, 
voidElimination, 
setElimination, 
rename, 
productElimination
Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}x,y:\mBbbR{}.    ((\muparrow{}isOdd(n))  {}\mRightarrow{}  (x  =  y  \mLeftarrow{}{}\mRightarrow{}  x\^{}n  =  y\^{}n))
Date html generated:
2016_05_18-AM-07_29_25
Last ObjectModification:
2015_12_28-AM-00_52_30
Theory : reals
Home
Index