Nuprl Lemma : rnexp-req-iff-odd

n:ℕ+. ∀x,y:ℝ.  ((↑isOdd(n))  (x ⇐⇒ x^n y^n))


Proof




Definitions occuring in Statement :  rnexp: x^k1 req: y real: isOdd: isOdd(n) nat_plus: + assert: b all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q uimplies: supposing a not: ¬A guard: {T} subtype_rel: A ⊆B false: False nat_plus: + uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_wf rleq_antisymmetry not-rless rnexp-rless-odd rless_transitivity1 rnexp_wf rleq_weakening rless_irreflexivity rless_wf req_inversion nat_plus_subtype_nat assert_wf isOdd_wf real_wf nat_plus_wf req_weakening req_functionality rnexp_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination because_Cache dependent_functionElimination independent_functionElimination applyEquality sqequalRule voidElimination setElimination rename productElimination

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}x,y:\mBbbR{}.    ((\muparrow{}isOdd(n))  {}\mRightarrow{}  (x  =  y  \mLeftarrow{}{}\mRightarrow{}  x\^{}n  =  y\^{}n))



Date html generated: 2016_05_18-AM-07_29_25
Last ObjectModification: 2015_12_28-AM-00_52_30

Theory : reals


Home Index