Nuprl Lemma : rpolydiv_wf

[n:ℤ]. ∀[a:ℕ1 ⟶ ℝ]. ∀[z:ℝ].  (rpolydiv(n;a;z) ∈ ℕn ⟶ ℝ)


Proof




Definitions occuring in Statement :  rpolydiv: rpolydiv(n;a;z) real: int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rpolydiv: rpolydiv(n;a;z) nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: guard: {T}
Lemmas referenced :  primrec_wf real_wf subtract_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le decidable__lt itermAdd_wf int_term_value_add_lemma istype-less_than radd_wf rmul_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule lambdaEquality_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis dependent_set_memberEquality_alt hypothesisEquality natural_numberEquality setElimination rename because_Cache productElimination dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType applyEquality addEquality productIsType axiomEquality equalityTransitivity equalitySymmetry isectIsTypeImplies inhabitedIsType functionIsType

Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[z:\mBbbR{}].    (rpolydiv(n;a;z)  \mmember{}  \mBbbN{}n  {}\mrightarrow{}  \mBbbR{})



Date html generated: 2019_10_29-AM-10_15_11
Last ObjectModification: 2019_01_14-PM-07_12_50

Theory : reals


Home Index