Nuprl Lemma : rpolydiv_wf
∀[n:ℤ]. ∀[a:ℕn + 1 ⟶ ℝ]. ∀[z:ℝ].  (rpolydiv(n;a;z) ∈ ℕn ⟶ ℝ)
Proof
Definitions occuring in Statement : 
rpolydiv: rpolydiv(n;a;z)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rpolydiv: rpolydiv(n;a;z)
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
guard: {T}
Lemmas referenced : 
primrec_wf, 
real_wf, 
subtract_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
decidable__lt, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-less_than, 
radd_wf, 
rmul_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
dependent_set_memberEquality_alt, 
hypothesisEquality, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
applyEquality, 
addEquality, 
productIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsType
Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[z:\mBbbR{}].    (rpolydiv(n;a;z)  \mmember{}  \mBbbN{}n  {}\mrightarrow{}  \mBbbR{})
Date html generated:
2019_10_29-AM-10_15_11
Last ObjectModification:
2019_01_14-PM-07_12_50
Theory : reals
Home
Index