Nuprl Lemma : rpositive-implies-rnonneg

[x:ℝ]. (rpositive(x)  rnonneg(x))


Proof




Definitions occuring in Statement :  rnonneg: rnonneg(x) rpositive: rpositive(x) real: uall: [x:A]. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop: real: rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B not: ¬A false: False rpositive2: rpositive2(x) exists: x:A. B[x] rnonneg2: rnonneg2(x) nat_plus: + so_lambda: λ2x.t[x] int_upper: {i...} guard: {T} uimplies: supposing a so_apply: x[s] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top subtype_rel: A ⊆B rev_uimplies: rev_uimplies(P;Q) ge: i ≥  nat:
Lemmas referenced :  rnonneg-iff rpositive-iff rpositive_wf less_than'_wf nat_plus_wf real_wf int_upper_wf all_wf le_wf less_than_transitivity1 less_than_wf int_upper_properties nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf mul_preserves_le nat_plus_subtype_nat mul_cancel_in_le mul-swap mul-commutes le_functionality le_weakening mul_bounds_1a int_upper_subtype_nat nat_wf nat_properties itermMultiply_wf itermConstant_wf intformeq_wf int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_eq_lemma equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination independent_functionElimination because_Cache hypothesis setElimination rename sqequalRule lambdaEquality dependent_functionElimination independent_pairEquality voidElimination applyEquality minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry dependent_pairFormation multiplyEquality dependent_set_memberEquality independent_isectElimination unionElimination int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll applyLambdaEquality

Latex:
\mforall{}[x:\mBbbR{}].  (rpositive(x)  {}\mRightarrow{}  rnonneg(x))



Date html generated: 2017_10_03-AM-08_23_41
Last ObjectModification: 2017_07_28-AM-07_23_00

Theory : reals


Home Index