Nuprl Lemma : rprod-is-zero

[n,m:ℤ]. ∀[x:{n..m 1-} ⟶ ℝ].  rprod(n;m;k.x[k]) r0 supposing ∃k:{n..m 1-}. (x[k] r0)


Proof




Definitions occuring in Statement :  rprod: rprod(n;m;k.x[k]) req: y int-to-real: r(n) real: int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] exists: x:A. B[x] function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a exists: x:A. B[x] int_seg: {i..j-} and: P ∧ Q cand: c∧ B guard: {T} lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prop: so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2
Lemmas referenced :  rprod-split int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermVar_wf intformless_wf itermAdd_wf itermConstant_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf req_witness rprod_wf int_seg_wf int-to-real_wf req_wf real_wf rmul_wf decidable__lt istype-le istype-less_than req_functionality req_weakening subtract_wf subtract-add-cancel itermSubtract_wf itermMultiply_wf req-iff-rsub-is-0 rmul_functionality rprod-split-last real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination setElimination rename independent_isectElimination addEquality natural_numberEquality dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType because_Cache applyEquality productIsType functionIsType inhabitedIsType dependent_set_memberEquality_alt closedConclusion

Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    rprod(n;m;k.x[k])  =  r0  supposing  \mexists{}k:\{n..m  +  1\msupminus{}\}.  (x[k]  =  r0)



Date html generated: 2019_10_29-AM-10_19_10
Last ObjectModification: 2019_01_19-AM-11_34_58

Theory : reals


Home Index