Nuprl Lemma : rprod-is-zero
∀[n,m:ℤ]. ∀[x:{n..m + 1-} ⟶ ℝ].  rprod(n;m;k.x[k]) = r0 supposing ∃k:{n..m + 1-}. (x[k] = r0)
Proof
Definitions occuring in Statement : 
rprod: rprod(n;m;k.x[k])
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
int_seg: {i..j-}
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
rprod-split, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
itermAdd_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
req_witness, 
rprod_wf, 
int_seg_wf, 
int-to-real_wf, 
req_wf, 
real_wf, 
rmul_wf, 
decidable__lt, 
istype-le, 
istype-less_than, 
req_functionality, 
req_weakening, 
subtract_wf, 
subtract-add-cancel, 
itermSubtract_wf, 
itermMultiply_wf, 
req-iff-rsub-is-0, 
rmul_functionality, 
rprod-split-last, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
setElimination, 
rename, 
independent_isectElimination, 
addEquality, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
because_Cache, 
applyEquality, 
productIsType, 
functionIsType, 
inhabitedIsType, 
dependent_set_memberEquality_alt, 
closedConclusion
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].    rprod(n;m;k.x[k])  =  r0  supposing  \mexists{}k:\{n..m  +  1\msupminus{}\}.  (x[k]  =  r0)
Date html generated:
2019_10_29-AM-10_19_10
Last ObjectModification:
2019_01_19-AM-11_34_58
Theory : reals
Home
Index