Nuprl Lemma : rroot-abs-non-neg

i:{2...}. ∀x:ℝ. ∀n:ℕ+.  (0 ≤ (rroot-abs(i;x) n))


Proof




Definitions occuring in Statement :  rroot-abs: rroot-abs(i;x) real: int_upper: {i...} nat_plus: + le: A ≤ B all: x:A. B[x] apply: a natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] rroot-abs: rroot-abs(i;x) uall: [x:A]. B[x] member: t ∈ T nat: int_upper: {i...} nat_plus: + guard: {T} decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: le: A ≤ B less_than': less_than'(a;b) has-value: (a)↓ so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtype_rel: A ⊆B true: True ge: i ≥  squash: T real:
Lemmas referenced :  exp-fastexp subtract_wf nat_plus_properties int_upper_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf le_wf exp_wf4 false_wf nat_wf value-type-has-value set-value-type int-value-type exp_preserves_lt decidable__lt not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel less_than_wf nat_plus_subtype_nat nat_properties intformless_wf int_formula_prop_less_lemma squash_wf true_wf exp-zero exp_wf2 iff_weakening_equal fastexp_wf int_upper_subtype_nat nat_plus_wf rabs_wf real_wf zero-le-nat iroot_wf equal_wf int_upper_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality dependent_set_memberEquality setElimination rename hypothesisEquality hypothesis dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll because_Cache callbyvalueReduce productElimination independent_functionElimination applyEquality equalityTransitivity equalitySymmetry applyLambdaEquality imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}i:\{2...\}.  \mforall{}x:\mBbbR{}.  \mforall{}n:\mBbbN{}\msupplus{}.    (0  \mleq{}  (rroot-abs(i;x)  n))



Date html generated: 2017_10_03-AM-10_41_02
Last ObjectModification: 2017_07_28-AM-08_17_03

Theory : reals


Home Index