Nuprl Lemma : totally-bounded-implies-nonvoid

[A:Set(ℝ)]. (totally-bounded(A)  (∃x:ℝ(x ∈ A)))


Proof




Definitions occuring in Statement :  totally-bounded: totally-bounded(A) rset-member: x ∈ A rset: Set(ℝ) real: uall: [x:A]. B[x] exists: x:A. B[x] implies:  Q
Definitions unfolded in proof :  totally-bounded: totally-bounded(A) uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: exists: x:A. B[x] nat_plus: + and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top false: False guard: {T}
Lemmas referenced :  real_wf rless_wf int-to-real_wf nat_plus_wf int_seg_wf rset-member_wf rabs_wf rsub_wf rset_wf rless-int nat_plus_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformand_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma istype-le istype-less_than
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt lambdaFormation_alt functionIsType universeIsType cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesisEquality productIsType setElimination rename because_Cache applyEquality dependent_functionElimination independent_functionElimination productElimination independent_pairFormation imageMemberEquality baseClosed dependent_pairFormation_alt dependent_set_memberEquality_alt unionElimination independent_isectElimination approximateComputation lambdaEquality_alt isect_memberEquality_alt voidElimination int_eqEquality

Latex:
\mforall{}[A:Set(\mBbbR{})].  (totally-bounded(A)  {}\mRightarrow{}  (\mexists{}x:\mBbbR{}.  (x  \mmember{}  A)))



Date html generated: 2019_10_29-AM-10_43_31
Last ObjectModification: 2019_04_19-PM-06_11_28

Theory : reals


Home Index