Nuprl Lemma : Legendre-root_wf
∀[n:ℕ]. ∀[i:ℕn].
  (Legendre-root(n;i) ∈ {z:ℝ| (z ∈ (r(-1), r1)) ∧ (Legendre(n;z) = r0) ∧ (r0 < (r((-1)^(n - i)) * Legendre(n + 1;z)))} )
Proof
Definitions occuring in Statement : 
Legendre-root: Legendre-root(n;i)
, 
Legendre: Legendre(n;x)
, 
rooint: (l, u)
, 
i-member: r ∈ I
, 
rless: x < y
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
exp: i^n
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
subtract: n - m
, 
add: n + m
, 
minus: -n
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
Legendre-root: Legendre-root(n;i)
, 
Legendre-roots-ext, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
subtract: n - m
, 
so_apply: x[s]
, 
sq_exists: ∃x:A [B[x]]
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
Legendre-roots-ext, 
subtype_rel_self, 
sq_exists_wf, 
rless_wf, 
rmul_wf, 
int-to-real_wf, 
exp_wf2, 
Legendre_wf, 
all_wf, 
add-member-int_seg2, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermSubtract_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
subtract_wf, 
istype-less_than, 
int_seg_wf, 
real_wf, 
i-member_wf, 
rooint_wf, 
req_wf, 
int_seg_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
itermAdd_wf, 
int_term_value_add_lemma, 
member_rooint_lemma, 
sq_stable__i-member, 
sq_stable__req, 
sq_stable__rless, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
sqequalRule, 
applyEquality, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
introduction, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
because_Cache, 
setEquality, 
productEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
productElimination, 
independent_pairFormation, 
independent_isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
unionElimination, 
natural_numberEquality, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
universeIsType, 
productIsType, 
functionIsType, 
setIsType, 
minusEquality, 
addEquality, 
inhabitedIsType, 
lambdaFormation_alt, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[i:\mBbbN{}n].
    (Legendre-root(n;i)  \mmember{}  \{z:\mBbbR{}| 
                                                  (z  \mmember{}  (r(-1),  r1))
                                                  \mwedge{}  (Legendre(n;z)  =  r0)
                                                  \mwedge{}  (r0  <  (r((-1)\^{}(n  -  i))  *  Legendre(n  +  1;z)))\}  )
Date html generated:
2019_10_31-AM-06_20_05
Last ObjectModification:
2019_01_18-PM-10_11_57
Theory : reals_2
Home
Index