Nuprl Lemma : Legendre-roots-rless
∀n:ℕ. ∀i,j:ℕn.  (i < j ⇒ (Legendre-root(n;i) < Legendre-root(n;j)))
Proof
Definitions occuring in Statement : 
Legendre-root: Legendre-root(n;i), 
rless: x < y, 
int_seg: {i..j-}, 
nat: ℕ, 
less_than: a < b, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
Legendre-root: Legendre-root(n;i), 
Legendre-roots-ext, 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
subtract: n - m, 
so_apply: x[s], 
sq_exists: ∃x:A [B[x]], 
sq_stable: SqStable(P), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
sequence: sequence(T), 
trans: Trans(T;x,y.E[x; y]), 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
seq-item: s[i], 
seq-len: ||s||, 
pi1: fst(t), 
pi2: snd(t), 
sorted-seq: sorted-seq(x,y.R[x; y];s), 
squash: ↓T
Lemmas referenced : 
Legendre-roots-ext, 
subtype_rel_self, 
sq_exists_wf, 
rless_wf, 
rmul_wf, 
int-to-real_wf, 
exp_wf2, 
Legendre_wf, 
all_wf, 
add-member-int_seg2, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermSubtract_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
subtract_wf, 
istype-less_than, 
int_seg_wf, 
real_wf, 
i-member_wf, 
rooint_wf, 
req_wf, 
int_seg_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
itermAdd_wf, 
int_term_value_add_lemma, 
sq_stable__rless, 
member_rooint_lemma, 
sorted-seq-iff, 
rless_transitivity2, 
rleq_weakening_rless, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalRule, 
cut, 
applyEquality, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
introduction, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
because_Cache, 
setEquality, 
productEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
productElimination, 
independent_pairFormation, 
independent_isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
unionElimination, 
natural_numberEquality, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
universeIsType, 
productIsType, 
functionIsType, 
setIsType, 
minusEquality, 
addEquality, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairEquality_alt, 
functionExtensionality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityIstype
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i,j:\mBbbN{}n.    (i  <  j  {}\mRightarrow{}  (Legendre-root(n;i)  <  Legendre-root(n;j)))
Date html generated:
2019_10_31-AM-06_20_14
Last ObjectModification:
2019_01_19-PM-00_54_20
Theory : reals_2
Home
Index